Zeitschriften und Ausgaben

Volumen 31 (2022): Heft 2 (July 2022)

Volumen 31 (2022): Heft 1 (March 2022)

Volumen 30 (2021): Heft 4 (November 2021)

Volumen 30 (2021): Heft 3 (July 2021)

Volumen 30 (2021): Heft 2 (May 2021)

Volumen 30 (2021): Heft 1 (March 2021)

Volumen 29 (2020): Heft 3 (December 2020)

Volumen 29 (2020): Heft 2 (August 2020)

Volumen 29 (2020): Heft 1 (April 2020)

Volumen 28 (2019): Heft 7 (December 2019)

Volumen 28 (2019): Heft 6 (August 2019)

Volumen 28 (2019): Heft 5 (May 2019)

Volumen 28 (2018): Heft 4 (December 2018)

Volumen 28 (2018): Heft 3 (October 2018)

Volumen 28 (2018): Heft 2 (August 2018)

Volumen 28 (2018): Heft 1 (April 2018)

Volumen 27 (2017): Heft 8 (December 2017)

Volumen 27 (2017): Heft 7 (September 2017)

Volumen 27 (2017): Heft 6 (April 2017)

Volumen 27 (2017): Heft 5 (January 2017)

Volumen 27 (2016): Heft 4 (October 2016)

Volumen 27 (2016): Heft 3 (July 2016)

Volumen 27 (2016): Heft 2 (April 2016)

Volumen 27 (2016): Heft 1 (January 2016)

Volumen 26 (2015): Heft 7 (September 2015)

Volumen 26 (2015): Heft 6 (June 2015)

Volumen 26 (2015): Heft 5 (March 2015)

Volumen 26 (2014): Heft 4 (December 2014)

Volumen 26 (2014): Heft 3 (September 2014)

Volumen 26 (2014): Heft 2 (July 2014)

Volumen 26 (2014): Heft 1 (April 2014)

Volumen 25 (2013): Heft 8 (December 2013)

Volumen 25 (2013): Heft 7 (September 2013)

Volumen 25 (2013): Heft 6 (June 2013)

Volumen 25 (2013): Heft 5 (March 2013)

Volumen 25 (2012): Heft 4 (December 2012)

Volumen 25 (2012): Heft 3 (August 2012)

Volumen 25 (2012): Heft 2 (June 2012)

Volumen 25 (2012): Heft 1 (February 2012)

Volumen 24 (2011): Heft 6 (November 2011)

Volumen 24 (2011): Heft 5 (May 2011)

Volumen 24 (2011): Heft 4 (January 2011)

Volumen 24 (2010): Heft 3 (November 2010)

Volumen 24 (2010): Heft 2 (July 2010)

Volumen 24 (2010): Heft 1 (April 2010)

Volumen 23 (2009): Heft 6 (December 2009)

Volumen 23 (2009): Heft 5 (September 2009)

Volumen 23 (2009): Heft 4 (May 2009)

Volumen 23 (2008): Heft 3 (December 2008)

Volumen 23 (2008): Heft 2 (August 2008)

Volumen 23 (2008): Heft 1 (April 2008)

Volumen 22 (2007): Heft 5 (June 2007)

Volumen 22 (2007): Heft 4 (January 2007)

Volumen 22 (2006): Heft 3 (October 2006)

Volumen 22 (2006): Heft 2 (July 2006)

Volumen 22 (2006): Heft 1 (April 2006)

Volumen 21 (2005): Heft 8 (December 2005)

Volumen 21 (2005): Heft 7 (October 2005)

Volumen 21 (2005): Heft 6 (July 2005)

Volumen 21 (2005): Heft 5 (April 2005)

Volumen 21 (2004): Heft 4 (December 2004)

Volumen 21 (2004): Heft 3 (October 2004)

Volumen 21 (2004): Heft 2 (July 2004)

Volumen 21 (2004): Heft 1 (March 2004)

Volumen 20 (2003): Heft 8 (December 2003)

Volumen 20 (2003): Heft 7 (November 2003)

Volumen 20 (2003): Heft 6 (July 2003)

Volumen 20 (2003): Heft 5 (March 2003)

Volumen 20 (2002): Heft 4 (December 2002)

Volumen 20 (2002): Heft 3 (August 2002)

Volumen 20 (2002): Heft 2 (June 2002)

Volumen 20 (2002): Heft 1 (February 2002)

Volumen 19 (2001): Heft 7 (October 2001)

Volumen 19 (2001): Heft 6 (July 2001)

Volumen 19 (2001): Heft 5 (April 2001)

Volumen 19 (2001): Heft 4 (January 2001)

Volumen 19 (2000): Heft 3 (October 2000)

Volumen 19 (2000): Heft 2 (July 2000)

Volumen 19 (2000): Heft 1 (April 2000)

Volumen 18 (1999): Heft 6 (December 1999)

Volumen 18 (1999): Heft 5 (July 1999)

Volumen 18 (1999): Heft 4 (April 1999)

Volumen 18 (1998): Heft 3 (December 1998)

Volumen 18 (1998): Heft 2 (August 1998)

Volumen 18 (1998): Heft 1 (April 1998)

Volumen 17 (1997): Heft 3 (December 1997)

Volumen 17 (1997): Heft 2 (September 1997)

Volumen 17 (1996): Heft 1 (December 1996)

Volumen 16 (1995): Heft 4 (November 1995)

Volumen 16 (1995): Heft 3 (July 1995)

Volumen 16 (1994): Heft 2 (June 1994)

Volumen 16 (1994): Heft 1 (May 1994)

Volumen 15 (1992): Heft 3 (November 1992)

Volumen 15 (1992): Heft 2 (April 1992)

Volumen 15 (1991): Heft 1 (August 1991)

Volumen 14 (1990): Heft 6 (June 1990)

Volumen 14 (1989): Heft 5 (October 1989)

Volumen 14 (1989): Heft 4 (February 1989)

Volumen 14 (1989): Heft 3 (January 1989)

Volumen 14 (1988): Heft 2 (October 1988)

Volumen 14 (1987): Heft 1 (December 1987)

Volumen 13 (1986): Heft 5 (December 1986)

Volumen 13 (1986): Heft 4 (August 1986)

Volumen 13 (1986): Heft 3 (July 1986)

Volumen 13 (1985): Heft 2 (December 1985)

Volumen 13 (1985): Heft 1 (January 1985)

Volumen 12 (1984): Heft 5 (November 1984)

Volumen 12 (1984): Heft 4 (July 1984)

Volumen 12 (1984): Heft 3 (February 1984)

Volumen 12 (1983): Heft 2 (June 1983)

Volumen 12 (1983): Heft 1 (February 1983)

Volumen 11 (1982): Heft 5 (November 1982)

Volumen 11 (1982): Heft 4 (August 1982)

Volumen 11 (1982): Heft 3 (January 1982)

Volumen 11 (1981): Heft 2 (September 1981)

Volumen 11 (1981): Heft 1 (March 1981)

Volumen 10 (1980): Heft 3 (October 1980)

Volumen 10 (1980): Heft 2 (July 1980)

Volumen 10 (1979): Heft 1 (December 1979)

Volumen 9 (1978): Heft 5 (December 1978)

Volumen 9 (1978): Heft 4 (July 1978)

Volumen 9 (1977): Heft 3 (October 1977)

Volumen 9 (1977): Heft 2 (June 1977)

Volumen 9 (1977): Heft 1 (April 1977)

Volumen 8 (1976): Heft 7 (October 1976)

Volumen 8 (1976): Heft 6 (June 1976)

Volumen 8 (1976): Heft 5 (March 1976)

Volumen 8 (1975): Heft 4 (December 1975)

Volumen 8 (1975): Heft 3 (August 1975)

Volumen 8 (1975): Heft 2 (May 1975)

Volumen 8 (1975): Heft 1 (January 1975)

Volumen 7 (1974): Heft 5 (September 1974)

Volumen 7 (1974): Heft 4 (April 1974)

Volumen 7 (1973): Heft 3 (November 1973)

Volumen 7 (1973): Heft 2 (June 1973)

Volumen 7 (1973): Heft 1 (January 1973)

Volumen 6 (1972): Heft 5 (October 1972)

Volumen 6 (1972): Heft 4 (August 1972)

Volumen 6 (1972): Heft 3 (March 1972)

Volumen 6 (1971): Heft 2 (September 1971)

Volumen 6 (1971): Heft 1 (July 1971)

Volumen 5 (1970): Heft 6 (December 1970)

Volumen 5 (1970): Heft 5 (November 1970)

Volumen 5 (1970): Heft 4 (August 1970)

Volumen 5 (1969): Heft 3 (December 1969)

Volumen 5 (1969): Heft 2 (August 1969)

Volumen 5 (1969): Heft 1 (June 1969)

Volumen 4 (1968): Heft 7 (December 1968)

Volumen 4 (1968): Heft 6 (November 1968)

Volumen 4 (1968): Heft 5 (July 1968)

Volumen 4 (1968): Heft 4 (May 1968)

Volumen 4 (1968): Heft 3 (February 1968)

Volumen 4 (1967): Heft 2 (October 1967)

Volumen 4 (1967): Heft 1 (August 1967)

Volumen 3 (1966): Heft 9 (December 1966)

Volumen 3 (1966): Heft 8 (December 1966)

Volumen 3 (1966): Heft 7 (November 1966)

Volumen 3 (1966): Heft 6 (September 1966)

Volumen 3 (1966): Heft 5 (May 1966)

Volumen 3 (1965): Heft 4 (October 1965)

Volumen 3 (1965): Heft 3 (August 1965)

Volumen 3 (1965): Heft 2 (May 1965)

Volumen 3 (1965): Heft 1 (April 1965)

Volumen 2 (1964): Heft 7 (November 1964)

Volumen 2 (1964): Heft 6 (October 1964)

Volumen 2 (1964): Heft 5 (May 1964)

Volumen 2 (1964): Heft 4 (February 1964)

Volumen 2 (1963): Heft 3 (October 1963)

Volumen 2 (1963): Heft 2 (June 1963)

Volumen 2 (1963): Heft 1 (March 1963)

Volumen 1 (1962): Heft 10 (December 1962)

Volumen 1 (1962): Heft 9 (December 1962)

Volumen 1 (1962): Heft 8 (November 1962)

Volumen 1 (1962): Heft 7 (November 1962)

Volumen 1 (1962): Heft 6 (July 1962)

Volumen 1 (1962): Heft 5 (February 1962)

Volumen 1 (1961): Heft 4 (November 1961)

Volumen 1 (1961): Heft 3 (August 1961)

Volumen 1 (1961): Heft 2 (May 1961)

Volumen 1 (1961): Heft 1 (January 1961)

Zeitschriftendaten
Format
Zeitschrift
eISSN
2719-9509
Erstveröffentlichung
01 Jan 1992
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Suche

Volumen 23 (2009): Heft 6 (December 2009)

Zeitschriftendaten
Format
Zeitschrift
eISSN
2719-9509
Erstveröffentlichung
01 Jan 1992
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Suche

6 Artikel
Uneingeschränkter Zugang

Editors’ Note

Online veröffentlicht: 30 Dec 2014
Seitenbereich: 337 - 337

Zusammenfassung

Uneingeschränkter Zugang

Fibre and Particle Release from Cigarette Filters

Online veröffentlicht: 30 Dec 2014
Seitenbereich: 338 - 358

Zusammenfassung

Abstract

Particulates, especially those in the respirable fraction, are generally suspected of being responsible for a host of respiratory and cardiovascular health problems that may include an increase in morbidity and mortality. These effects have been related not only to the carbonaceous particulates, such as diesel soot, but also to more inert dust particles without any specific intrinsic hazard.

Therefore, any exposure to respirable dust from consumer products, and especially from tobacco products, is of considerable concern. In this context, a report of particular interest to the general public purported to show that cellulose acetate fibres released from cigarette filters could represent an additional burden and risk to the smoker. The underlying presumption was that these fibres could be respired and retained in portions of the respiratory tract, in particular in the lung.

In response to these assertions, studies were performed by and on behalf of the affected industry and the results showed that these fibres did not pose a health risk. The findings revealed that some acetate fibres were generated during the processing of the cigarettes, but they were captured on the cross-section of the cigarette filter and remained on the filter during smoking. Those fibres potentially released during smoking would be deposited inside the mouth area because they were too large to pass the larynx and could not physically enter the bronchial or pulmonary sections of the respiratory tract.

A working group from the German StandardisationOrganisation (DIN) recently discussed the experimental findings regarding the fibres generated during the processing of the acetate cigarette filter. Additional examinations on the release of respirable particles were initiated using Scanning Electron Microscope (SEM) to focus special attention on fibre-shaped particulates. The results of these recent analyses and the former findings led the group to the conclusion that ‘from the toxicological perspective, compared to the health risks otherwise associated with cigarette smoking, the release of particles from acetate filters does not constitute a particular health risk’.

Subsequent to this review and evaluation of the results some additional examinations were performed to examine further aspects of particle release. Using an improved analytical technique with real-time detection, the particle number and sizes were determined for the release of respirable particles from cigarettes and cigarette filters. The studies were performed by drawing air through filters and filter cigarettes in a clean room under intense smoking conditions, and the particles were analysed in real time with a Laser Aerosol Spectrometer. Using this technique, approximately 10 particles with a size greater than 0.3 ìm were counted per cigarette. This is comparable to a particle load in a clean room environment and representing approx. 0.05% of the particle load in ambient air.

Uneingeschränkter Zugang

A Study of the Reaction Between Quinone and 2R4F Cigarette Smoke Condensate

Online veröffentlicht: 30 Dec 2014
Seitenbereich: 359 - 367

Zusammenfassung

Abstract

A study using atomic emission detection (AED) as an approach to explore the fate of quinone added into 2R4F cigarette smoke condensate (CSC) have been performed. Both natural isotope quinone and 13C labeled quinone were used in the study. When coupled with a gas chromatographic separation (GC/AED), the AED provided informative new data on 13C isotope enriched products generated following reactions between 2R4F CSC and the quinone. Two 13C containing species were detected by GC/AED. Matching chromatographic separation using gas chromatography/mass selective detection (GC/MSD) allowed for a structural assignment of a relatively minor CSC 13C 6quinone reaction product as nitrohydroquinone (13C6NO2HQ). The chemical mechanism accounting for the formation of 13C6NO2HQ in the CSC was envisioned to be a reaction product between HONO and 13C 6Quinone (13C6Q) to form 13C6NO2Q, followed by reduction of 13C6NO2Q to 13C6NO2HQ. The amount of 13C6NO2HQ accounted for ~6% of the added 13C6Q. Identical trends in reaction chemistries were found for experiments with 12C6Q. The major reaction product detected upon addition of 13C6Q to the 2R4F CSC sample was 13C6HQ. 13C6HQ accounted for, on average, ~47% of the initial 13C6Q concentration. Identical trends in reaction chemistries were found for experiments with 12C6Q. No additional 13C containing species were detected. A 13C AED compound independent calibration (CIC) approach under the operating conditions was not possible. This work further expands the knowledge regarding possible reactions of quinone and hydroquinone in CSC.

Uneingeschränkter Zugang

Monitoring the Bacterial and Fungal Biota of Eleven Tobacco Grades Stored at Three Different Locations

Online veröffentlicht: 30 Dec 2014
Seitenbereich: 368 - 376

Zusammenfassung

Abstract

Tobacco as many other plants has its own microbiota. There are very few studies determining the evolution of this microbiota during tobacco storage, which may affect the quality of tobacco. Polymerase chain reaction (PCR) combined with denaturing gradient gel electrophoresis (DGGE) were used to determine changes in the microbiota of tobacco during the aging of eleven different tobacco grades stored at three different locations for twelve months. The microbial fraction of these tobacco grades was extracted, and the bacterial 16S and the fungal 18S ribosomal RNA gene (rDNA) sequences were PCR amplified before being segregated by DGGE. The bacterial complexity of the tobacco grades was represented by DGGE migrating banding profiles that varied between 20 and 30 bands. Some variations in the banding profiles were observed between the tobacco grades, but overall no substantial changes occurred in the bacterial population of the different grades during their storage at different locations. Most of the fungal DGGE profiles were identical and had only one dominating band related to the genus Aspergillus. Bacterial and fungal isolates were also derived from the microbial fractions of the tobacco, and part of their respective 16S and 18S rDNA sequences were determined. Bacterial isolates belonged to Bacillales and gamma Protobacteria. Fungal isolates belonged to the genus Aspergillus. Our results showed that the bacterial and fungal biota of tobacco are relatively stable throughout 12 months storage time.

Uneingeschränkter Zugang

The Influence of a Humectant on the Retention by Humans of Solanesol from Cigarette Smoke (Part 2, Glycerin)

Online veröffentlicht: 30 Dec 2014
Seitenbereich: 378 - 383

Zusammenfassung

Abstract

Two common humectants are used as additives in the cigarette manufacturing process, propylene glycol (PG) and glycerin. The humectants may influence the deposition of cigarette smoke in the human respiratory tract by affecting the hygroscopic properties and growth of smoke particles. This study examines the influence of glycerin addition on the retention of solanesol by smokers. The influence of PG addition has been previously reported (7). The first cigarette used in the study (control) was a commercially available brand containing no additives in the blend (with a measured level of glycerin of 0.19%). The other cigarette (test) had an identical tobacco blend to the control, but had 2.3% added glycerin. The construction of the cigarette with 2.3% glycerin (test) was selected to match as closely as possible the ‘tar’ (as measured by Federal Trade Commission regimen), pressure drop (open and closed), and nicotine level of the commercial cigarette (control). Twelve smokers evaluated both products. The sample collection was performed using three cigarettes smoked within one hour. Each human subject smoked the control cigarette and then the test cigarette in two separate sessions. The exhaled smoke was collected using a vacuum assisted procedure designed to avoid strain in exhaling, and solanesol was analyzed using an high performance liquid chromatography (HPLC) technique. The cigarette butts from the smokers were collected and also analyzed for solanesol. The results obtained for the cigarette butts from the smokers were used to calculate the level of solanesol in the smoke delivered to the human subject, based on calibration curves. These curves were generated separately by analyzing the solanesol in smoke and in the cigarette butts obtained by machine smoking under different puffing regimes. Knowing the levels of delivered amount of solanesol and that in the exhaled smoke it was possible to calculate the retention of this compound from mainstream smoke for the two cigarette types. The amount of solanesol retained by the smoker (per cigarette) was on average 314.8 µg/cig with 18.9% relative standard deviation for the commercial cigarette, and 302.6 µg/cig with 20.3% relative standard deviation for the cigarette with 2.3% added glycerin. The retention % of solanesol from the commercial cigarette showed an average of 69.5% with 9.4% relative standard deviation, and the cigarette with 2.3% added glycerin showed an average retention of 69.4% with 10.5% relative standard deviation. Applying the paired t-test to the data it was found that there were no significant differences in the retention amount of solanesol, or in the retention % of solanesol for the two cigarettes. No correlation was found between the amount of solanesol delivered to the smoker (in µg/cig) and the solanesol retention % by the smoker.

Uneingeschränkter Zugang

The Composition of Cigarette Smoke. An Historical Perspective of Several Polycyclic Aromatic Hydrocarbons

Online veröffentlicht: 30 Dec 2014
Seitenbereich: 384 - 410

Zusammenfassung

Abstract

Because of the significant advancements in fractionation, analytical, and characterization technologies since the early 1960s, hundreds of components of complex mixtures have been accurately characterized without the necessity of actually isolating the individual component. This has been particularly true in the case of the complex mixtures tobacco and tobacco smoke. Herein, an historical account of a mid-1950 situation concerning polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke is presented. While the number of PAHs identified in tobacco smoke has escalated from the initial PAH, azulene, identified in 1947 to almost 100 PAHs identified by late 1963 to more than 500 PAHs identified by the late 1970s, the number of PAHs isolated individually and characterized by several of the so-called classical chemical means (melting point, mixture melting point, derivative preparation and properties) in the mid-1950s and since is relatively few, 14 in all. They were among 44 PAHs identified in cigarette mainstream smoke and included the following PAHs ranging from bicyclic to pentacyclic: Acenaphthylene, 1,2-dihydroacenaphthylene, anthracene, benz[a]anthracene, benzo[a]pyrene, chrysene, dibenz[a, h]anthracene, fluoranthene, 9H-fluorene, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, phenanthrene, and pyrene. One of them, benzo[a]pyrene, was similarly characterized in another study in 1959 by Hoffmann.

6 Artikel
Uneingeschränkter Zugang

Editors’ Note

Online veröffentlicht: 30 Dec 2014
Seitenbereich: 337 - 337

Zusammenfassung

Uneingeschränkter Zugang

Fibre and Particle Release from Cigarette Filters

Online veröffentlicht: 30 Dec 2014
Seitenbereich: 338 - 358

Zusammenfassung

Abstract

Particulates, especially those in the respirable fraction, are generally suspected of being responsible for a host of respiratory and cardiovascular health problems that may include an increase in morbidity and mortality. These effects have been related not only to the carbonaceous particulates, such as diesel soot, but also to more inert dust particles without any specific intrinsic hazard.

Therefore, any exposure to respirable dust from consumer products, and especially from tobacco products, is of considerable concern. In this context, a report of particular interest to the general public purported to show that cellulose acetate fibres released from cigarette filters could represent an additional burden and risk to the smoker. The underlying presumption was that these fibres could be respired and retained in portions of the respiratory tract, in particular in the lung.

In response to these assertions, studies were performed by and on behalf of the affected industry and the results showed that these fibres did not pose a health risk. The findings revealed that some acetate fibres were generated during the processing of the cigarettes, but they were captured on the cross-section of the cigarette filter and remained on the filter during smoking. Those fibres potentially released during smoking would be deposited inside the mouth area because they were too large to pass the larynx and could not physically enter the bronchial or pulmonary sections of the respiratory tract.

A working group from the German StandardisationOrganisation (DIN) recently discussed the experimental findings regarding the fibres generated during the processing of the acetate cigarette filter. Additional examinations on the release of respirable particles were initiated using Scanning Electron Microscope (SEM) to focus special attention on fibre-shaped particulates. The results of these recent analyses and the former findings led the group to the conclusion that ‘from the toxicological perspective, compared to the health risks otherwise associated with cigarette smoking, the release of particles from acetate filters does not constitute a particular health risk’.

Subsequent to this review and evaluation of the results some additional examinations were performed to examine further aspects of particle release. Using an improved analytical technique with real-time detection, the particle number and sizes were determined for the release of respirable particles from cigarettes and cigarette filters. The studies were performed by drawing air through filters and filter cigarettes in a clean room under intense smoking conditions, and the particles were analysed in real time with a Laser Aerosol Spectrometer. Using this technique, approximately 10 particles with a size greater than 0.3 ìm were counted per cigarette. This is comparable to a particle load in a clean room environment and representing approx. 0.05% of the particle load in ambient air.

Uneingeschränkter Zugang

A Study of the Reaction Between Quinone and 2R4F Cigarette Smoke Condensate

Online veröffentlicht: 30 Dec 2014
Seitenbereich: 359 - 367

Zusammenfassung

Abstract

A study using atomic emission detection (AED) as an approach to explore the fate of quinone added into 2R4F cigarette smoke condensate (CSC) have been performed. Both natural isotope quinone and 13C labeled quinone were used in the study. When coupled with a gas chromatographic separation (GC/AED), the AED provided informative new data on 13C isotope enriched products generated following reactions between 2R4F CSC and the quinone. Two 13C containing species were detected by GC/AED. Matching chromatographic separation using gas chromatography/mass selective detection (GC/MSD) allowed for a structural assignment of a relatively minor CSC 13C 6quinone reaction product as nitrohydroquinone (13C6NO2HQ). The chemical mechanism accounting for the formation of 13C6NO2HQ in the CSC was envisioned to be a reaction product between HONO and 13C 6Quinone (13C6Q) to form 13C6NO2Q, followed by reduction of 13C6NO2Q to 13C6NO2HQ. The amount of 13C6NO2HQ accounted for ~6% of the added 13C6Q. Identical trends in reaction chemistries were found for experiments with 12C6Q. The major reaction product detected upon addition of 13C6Q to the 2R4F CSC sample was 13C6HQ. 13C6HQ accounted for, on average, ~47% of the initial 13C6Q concentration. Identical trends in reaction chemistries were found for experiments with 12C6Q. No additional 13C containing species were detected. A 13C AED compound independent calibration (CIC) approach under the operating conditions was not possible. This work further expands the knowledge regarding possible reactions of quinone and hydroquinone in CSC.

Uneingeschränkter Zugang

Monitoring the Bacterial and Fungal Biota of Eleven Tobacco Grades Stored at Three Different Locations

Online veröffentlicht: 30 Dec 2014
Seitenbereich: 368 - 376

Zusammenfassung

Abstract

Tobacco as many other plants has its own microbiota. There are very few studies determining the evolution of this microbiota during tobacco storage, which may affect the quality of tobacco. Polymerase chain reaction (PCR) combined with denaturing gradient gel electrophoresis (DGGE) were used to determine changes in the microbiota of tobacco during the aging of eleven different tobacco grades stored at three different locations for twelve months. The microbial fraction of these tobacco grades was extracted, and the bacterial 16S and the fungal 18S ribosomal RNA gene (rDNA) sequences were PCR amplified before being segregated by DGGE. The bacterial complexity of the tobacco grades was represented by DGGE migrating banding profiles that varied between 20 and 30 bands. Some variations in the banding profiles were observed between the tobacco grades, but overall no substantial changes occurred in the bacterial population of the different grades during their storage at different locations. Most of the fungal DGGE profiles were identical and had only one dominating band related to the genus Aspergillus. Bacterial and fungal isolates were also derived from the microbial fractions of the tobacco, and part of their respective 16S and 18S rDNA sequences were determined. Bacterial isolates belonged to Bacillales and gamma Protobacteria. Fungal isolates belonged to the genus Aspergillus. Our results showed that the bacterial and fungal biota of tobacco are relatively stable throughout 12 months storage time.

Uneingeschränkter Zugang

The Influence of a Humectant on the Retention by Humans of Solanesol from Cigarette Smoke (Part 2, Glycerin)

Online veröffentlicht: 30 Dec 2014
Seitenbereich: 378 - 383

Zusammenfassung

Abstract

Two common humectants are used as additives in the cigarette manufacturing process, propylene glycol (PG) and glycerin. The humectants may influence the deposition of cigarette smoke in the human respiratory tract by affecting the hygroscopic properties and growth of smoke particles. This study examines the influence of glycerin addition on the retention of solanesol by smokers. The influence of PG addition has been previously reported (7). The first cigarette used in the study (control) was a commercially available brand containing no additives in the blend (with a measured level of glycerin of 0.19%). The other cigarette (test) had an identical tobacco blend to the control, but had 2.3% added glycerin. The construction of the cigarette with 2.3% glycerin (test) was selected to match as closely as possible the ‘tar’ (as measured by Federal Trade Commission regimen), pressure drop (open and closed), and nicotine level of the commercial cigarette (control). Twelve smokers evaluated both products. The sample collection was performed using three cigarettes smoked within one hour. Each human subject smoked the control cigarette and then the test cigarette in two separate sessions. The exhaled smoke was collected using a vacuum assisted procedure designed to avoid strain in exhaling, and solanesol was analyzed using an high performance liquid chromatography (HPLC) technique. The cigarette butts from the smokers were collected and also analyzed for solanesol. The results obtained for the cigarette butts from the smokers were used to calculate the level of solanesol in the smoke delivered to the human subject, based on calibration curves. These curves were generated separately by analyzing the solanesol in smoke and in the cigarette butts obtained by machine smoking under different puffing regimes. Knowing the levels of delivered amount of solanesol and that in the exhaled smoke it was possible to calculate the retention of this compound from mainstream smoke for the two cigarette types. The amount of solanesol retained by the smoker (per cigarette) was on average 314.8 µg/cig with 18.9% relative standard deviation for the commercial cigarette, and 302.6 µg/cig with 20.3% relative standard deviation for the cigarette with 2.3% added glycerin. The retention % of solanesol from the commercial cigarette showed an average of 69.5% with 9.4% relative standard deviation, and the cigarette with 2.3% added glycerin showed an average retention of 69.4% with 10.5% relative standard deviation. Applying the paired t-test to the data it was found that there were no significant differences in the retention amount of solanesol, or in the retention % of solanesol for the two cigarettes. No correlation was found between the amount of solanesol delivered to the smoker (in µg/cig) and the solanesol retention % by the smoker.

Uneingeschränkter Zugang

The Composition of Cigarette Smoke. An Historical Perspective of Several Polycyclic Aromatic Hydrocarbons

Online veröffentlicht: 30 Dec 2014
Seitenbereich: 384 - 410

Zusammenfassung

Abstract

Because of the significant advancements in fractionation, analytical, and characterization technologies since the early 1960s, hundreds of components of complex mixtures have been accurately characterized without the necessity of actually isolating the individual component. This has been particularly true in the case of the complex mixtures tobacco and tobacco smoke. Herein, an historical account of a mid-1950 situation concerning polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke is presented. While the number of PAHs identified in tobacco smoke has escalated from the initial PAH, azulene, identified in 1947 to almost 100 PAHs identified by late 1963 to more than 500 PAHs identified by the late 1970s, the number of PAHs isolated individually and characterized by several of the so-called classical chemical means (melting point, mixture melting point, derivative preparation and properties) in the mid-1950s and since is relatively few, 14 in all. They were among 44 PAHs identified in cigarette mainstream smoke and included the following PAHs ranging from bicyclic to pentacyclic: Acenaphthylene, 1,2-dihydroacenaphthylene, anthracene, benz[a]anthracene, benzo[a]pyrene, chrysene, dibenz[a, h]anthracene, fluoranthene, 9H-fluorene, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, phenanthrene, and pyrene. One of them, benzo[a]pyrene, was similarly characterized in another study in 1959 by Hoffmann.

Planen Sie Ihre Fernkonferenz mit Scienceendo