Zeitschriften und Ausgaben

Volumen 31 (2022): Heft 2 (July 2022)

Volumen 31 (2022): Heft 1 (March 2022)

Volumen 30 (2021): Heft 4 (November 2021)

Volumen 30 (2021): Heft 3 (July 2021)

Volumen 30 (2021): Heft 2 (May 2021)

Volumen 30 (2021): Heft 1 (March 2021)

Volumen 29 (2020): Heft 3 (December 2020)

Volumen 29 (2020): Heft 2 (August 2020)

Volumen 29 (2020): Heft 1 (April 2020)

Volumen 28 (2019): Heft 7 (December 2019)

Volumen 28 (2019): Heft 6 (August 2019)

Volumen 28 (2019): Heft 5 (May 2019)

Volumen 28 (2018): Heft 4 (December 2018)

Volumen 28 (2018): Heft 3 (October 2018)

Volumen 28 (2018): Heft 2 (August 2018)

Volumen 28 (2018): Heft 1 (April 2018)

Volumen 27 (2017): Heft 8 (December 2017)

Volumen 27 (2017): Heft 7 (September 2017)

Volumen 27 (2017): Heft 6 (April 2017)

Volumen 27 (2017): Heft 5 (January 2017)

Volumen 27 (2016): Heft 4 (October 2016)

Volumen 27 (2016): Heft 3 (July 2016)

Volumen 27 (2016): Heft 2 (April 2016)

Volumen 27 (2016): Heft 1 (January 2016)

Volumen 26 (2015): Heft 7 (September 2015)

Volumen 26 (2015): Heft 6 (June 2015)

Volumen 26 (2015): Heft 5 (March 2015)

Volumen 26 (2014): Heft 4 (December 2014)

Volumen 26 (2014): Heft 3 (September 2014)

Volumen 26 (2014): Heft 2 (July 2014)

Volumen 26 (2014): Heft 1 (April 2014)

Volumen 25 (2013): Heft 8 (December 2013)

Volumen 25 (2013): Heft 7 (September 2013)

Volumen 25 (2013): Heft 6 (June 2013)

Volumen 25 (2013): Heft 5 (March 2013)

Volumen 25 (2012): Heft 4 (December 2012)

Volumen 25 (2012): Heft 3 (August 2012)

Volumen 25 (2012): Heft 2 (June 2012)

Volumen 25 (2012): Heft 1 (February 2012)

Volumen 24 (2011): Heft 6 (November 2011)

Volumen 24 (2011): Heft 5 (May 2011)

Volumen 24 (2011): Heft 4 (January 2011)

Volumen 24 (2010): Heft 3 (November 2010)

Volumen 24 (2010): Heft 2 (July 2010)

Volumen 24 (2010): Heft 1 (April 2010)

Volumen 23 (2009): Heft 6 (December 2009)

Volumen 23 (2009): Heft 5 (September 2009)

Volumen 23 (2009): Heft 4 (May 2009)

Volumen 23 (2008): Heft 3 (December 2008)

Volumen 23 (2008): Heft 2 (August 2008)

Volumen 23 (2008): Heft 1 (April 2008)

Volumen 22 (2007): Heft 5 (June 2007)

Volumen 22 (2007): Heft 4 (January 2007)

Volumen 22 (2006): Heft 3 (October 2006)

Volumen 22 (2006): Heft 2 (July 2006)

Volumen 22 (2006): Heft 1 (April 2006)

Volumen 21 (2005): Heft 8 (December 2005)

Volumen 21 (2005): Heft 7 (October 2005)

Volumen 21 (2005): Heft 6 (July 2005)

Volumen 21 (2005): Heft 5 (April 2005)

Volumen 21 (2004): Heft 4 (December 2004)

Volumen 21 (2004): Heft 3 (October 2004)

Volumen 21 (2004): Heft 2 (July 2004)

Volumen 21 (2004): Heft 1 (March 2004)

Volumen 20 (2003): Heft 8 (December 2003)

Volumen 20 (2003): Heft 7 (November 2003)

Volumen 20 (2003): Heft 6 (July 2003)

Volumen 20 (2003): Heft 5 (March 2003)

Volumen 20 (2002): Heft 4 (December 2002)

Volumen 20 (2002): Heft 3 (August 2002)

Volumen 20 (2002): Heft 2 (June 2002)

Volumen 20 (2002): Heft 1 (February 2002)

Volumen 19 (2001): Heft 7 (October 2001)

Volumen 19 (2001): Heft 6 (July 2001)

Volumen 19 (2001): Heft 5 (April 2001)

Volumen 19 (2001): Heft 4 (January 2001)

Volumen 19 (2000): Heft 3 (October 2000)

Volumen 19 (2000): Heft 2 (July 2000)

Volumen 19 (2000): Heft 1 (April 2000)

Volumen 18 (1999): Heft 6 (December 1999)

Volumen 18 (1999): Heft 5 (July 1999)

Volumen 18 (1999): Heft 4 (April 1999)

Volumen 18 (1998): Heft 3 (December 1998)

Volumen 18 (1998): Heft 2 (August 1998)

Volumen 18 (1998): Heft 1 (April 1998)

Volumen 17 (1997): Heft 3 (December 1997)

Volumen 17 (1997): Heft 2 (September 1997)

Volumen 17 (1996): Heft 1 (December 1996)

Volumen 16 (1995): Heft 4 (November 1995)

Volumen 16 (1995): Heft 3 (July 1995)

Volumen 16 (1994): Heft 2 (June 1994)

Volumen 16 (1994): Heft 1 (May 1994)

Volumen 15 (1992): Heft 3 (November 1992)

Volumen 15 (1992): Heft 2 (April 1992)

Volumen 15 (1991): Heft 1 (August 1991)

Volumen 14 (1990): Heft 6 (June 1990)

Volumen 14 (1989): Heft 5 (October 1989)

Volumen 14 (1989): Heft 4 (February 1989)

Volumen 14 (1989): Heft 3 (January 1989)

Volumen 14 (1988): Heft 2 (October 1988)

Volumen 14 (1987): Heft 1 (December 1987)

Volumen 13 (1986): Heft 5 (December 1986)

Volumen 13 (1986): Heft 4 (August 1986)

Volumen 13 (1986): Heft 3 (July 1986)

Volumen 13 (1985): Heft 2 (December 1985)

Volumen 13 (1985): Heft 1 (January 1985)

Volumen 12 (1984): Heft 5 (November 1984)

Volumen 12 (1984): Heft 4 (July 1984)

Volumen 12 (1984): Heft 3 (February 1984)

Volumen 12 (1983): Heft 2 (June 1983)

Volumen 12 (1983): Heft 1 (February 1983)

Volumen 11 (1982): Heft 5 (November 1982)

Volumen 11 (1982): Heft 4 (August 1982)

Volumen 11 (1982): Heft 3 (January 1982)

Volumen 11 (1981): Heft 2 (September 1981)

Volumen 11 (1981): Heft 1 (March 1981)

Volumen 10 (1980): Heft 3 (October 1980)

Volumen 10 (1980): Heft 2 (July 1980)

Volumen 10 (1979): Heft 1 (December 1979)

Volumen 9 (1978): Heft 5 (December 1978)

Volumen 9 (1978): Heft 4 (July 1978)

Volumen 9 (1977): Heft 3 (October 1977)

Volumen 9 (1977): Heft 2 (June 1977)

Volumen 9 (1977): Heft 1 (April 1977)

Volumen 8 (1976): Heft 7 (October 1976)

Volumen 8 (1976): Heft 6 (June 1976)

Volumen 8 (1976): Heft 5 (March 1976)

Volumen 8 (1975): Heft 4 (December 1975)

Volumen 8 (1975): Heft 3 (August 1975)

Volumen 8 (1975): Heft 2 (May 1975)

Volumen 8 (1975): Heft 1 (January 1975)

Volumen 7 (1974): Heft 5 (September 1974)

Volumen 7 (1974): Heft 4 (April 1974)

Volumen 7 (1973): Heft 3 (November 1973)

Volumen 7 (1973): Heft 2 (June 1973)

Volumen 7 (1973): Heft 1 (January 1973)

Volumen 6 (1972): Heft 5 (October 1972)

Volumen 6 (1972): Heft 4 (August 1972)

Volumen 6 (1972): Heft 3 (March 1972)

Volumen 6 (1971): Heft 2 (September 1971)

Volumen 6 (1971): Heft 1 (July 1971)

Volumen 5 (1970): Heft 6 (December 1970)

Volumen 5 (1970): Heft 5 (November 1970)

Volumen 5 (1970): Heft 4 (August 1970)

Volumen 5 (1969): Heft 3 (December 1969)

Volumen 5 (1969): Heft 2 (August 1969)

Volumen 5 (1969): Heft 1 (June 1969)

Volumen 4 (1968): Heft 7 (December 1968)

Volumen 4 (1968): Heft 6 (November 1968)

Volumen 4 (1968): Heft 5 (July 1968)

Volumen 4 (1968): Heft 4 (May 1968)

Volumen 4 (1968): Heft 3 (February 1968)

Volumen 4 (1967): Heft 2 (October 1967)

Volumen 4 (1967): Heft 1 (August 1967)

Volumen 3 (1966): Heft 9 (December 1966)

Volumen 3 (1966): Heft 8 (December 1966)

Volumen 3 (1966): Heft 7 (November 1966)

Volumen 3 (1966): Heft 6 (September 1966)

Volumen 3 (1966): Heft 5 (May 1966)

Volumen 3 (1965): Heft 4 (October 1965)

Volumen 3 (1965): Heft 3 (August 1965)

Volumen 3 (1965): Heft 2 (May 1965)

Volumen 3 (1965): Heft 1 (April 1965)

Volumen 2 (1964): Heft 7 (November 1964)

Volumen 2 (1964): Heft 6 (October 1964)

Volumen 2 (1964): Heft 5 (May 1964)

Volumen 2 (1964): Heft 4 (February 1964)

Volumen 2 (1963): Heft 3 (October 1963)

Volumen 2 (1963): Heft 2 (June 1963)

Volumen 2 (1963): Heft 1 (March 1963)

Volumen 1 (1962): Heft 10 (December 1962)

Volumen 1 (1962): Heft 9 (December 1962)

Volumen 1 (1962): Heft 8 (November 1962)

Volumen 1 (1962): Heft 7 (November 1962)

Volumen 1 (1962): Heft 6 (July 1962)

Volumen 1 (1962): Heft 5 (February 1962)

Volumen 1 (1961): Heft 4 (November 1961)

Volumen 1 (1961): Heft 3 (August 1961)

Volumen 1 (1961): Heft 2 (May 1961)

Volumen 1 (1961): Heft 1 (January 1961)

Zeitschriftendaten
Format
Zeitschrift
eISSN
2719-9509
Erstveröffentlichung
01 Jan 1992
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Suche

Volumen 14 (1989): Heft 4 (February 1989)

Zeitschriftendaten
Format
Zeitschrift
eISSN
2719-9509
Erstveröffentlichung
01 Jan 1992
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Suche

3 Artikel
Uneingeschränkter Zugang

Physiology and Biochemistry of the Tobacco Plant. 1. Growth and Development - Physiologie und Biochemie der Tabakpflanze: 1. Wachstum und Entwicklung

Online veröffentlicht: 06 Jan 2015
Seitenbereich: 197 - 209

Zusammenfassung

Abstract

Growth and development processes of a tobacco plant affect the chemical composition of the leaf and therefore the usability of the leaf. Growth starts with the initial stages of germination and development stops with the cured leaf. Most tobacco seed will germinate in the dark and the first seeds to germinate from a seed lot tend to produce larger plants for transplant and harvest. Nicotine is found in mature seed and increased rate of germination increases rate of nicotine accumulation in the young seedling. Carbon / nitrogen balance in the leaf is important for leaf usability and is influenced by available soil water and soil nitrogen. Oriental leaf is produced typically with limited water and nitrogen supply and the leaf contains large amounts of carbohydrates and ether solubles but small amounts of nitrogenous substances. Cigar filler tobacco is grown on soils with a plentiful supply of soil water and soil nitrogen and the leaf contains large amounts of nitrogenous substances. Intermediate to these tobacco types is flue-cured tobacco which is grown with limited soil nirogen but adequate water and the leaf is relatively thin with high carbohydrate content. Maximum rate of leaf expansion is achieved early in development of a leaf. In flue-cured tobacco phosphorus and potassium concentrations remain constant during growth, whereas nitrogen, calcium and magnesium concentrations decrease. In Oriental tobacco the concentrations of nitrogen, phosphorus, potassium and calcium decrease during the growing season. However, Burley tobacco accumulates relatively greater amounts of nitrogen, phosphorus and potassium during the first half of the growing season relative to dry matter accumulation. Maximum growth per unit leaf weight occurs 14 to 21 days after transplanting, whereas maximum dry matter accumulation per day occurs 50 to 55 days after transplanting. Leaf development including senescence is controlled genetically and decreased chlorophyll and protein and increased nicotine contents are important changes associated with leaf senescence. Maximum nicotine content of leaf occurs at successively higher stalk positions as the plant matures.

Uneingeschränkter Zugang

Physiology and Biochemistry of the Tobacco Plant. 2. Physiological Malfunctions: Mineral Nutrients - Physiologie und Biochemie der Tabakpflanze: 2. PhysiologischeStörungen: Mineralstoffe

Online veröffentlicht: 06 Jan 2015
Seitenbereich: 211 - 236

Zusammenfassung

Abstract

Quality tobacco leaf comes from plants grown with balanced mineral nutrition. The “structural nutrients” (carbon, hydrogen and oxygen) are approximately 90 % of the dry weight of cured leaf but are of little economic concern. The macronutrients (nitrogen, phosphorus, potassium, calcium, magnesium and sulfur) and the micronutrients (boron, chlorine, copper, iron, manganese, molybdenum and zinc) are of great economic concern and adequate amounts in the soil are essential for production of quality tobacco leaf. Nitrogen, phosphorus, potassium and magnesium are mobile within the plant and deficiency symptoms are observed first in the lower leaves and later in the upper leaves. Deficiency symptoms of the immobile nutrients calcium, boron, manganese, sulfur and iron are observed first on the upper leaves or terminal bud. Of all the mineral nutrients nitrogen has the greatest effect on shoot and root weight. As available nitrogen increases leaf nicotine increases and reducing sugars decrease; thus the sugar:nicotine ratio decreases dramatically. There is a positive relationship between amount of reduced nitrogen and reduced sulfur in the plant and this interaction is important as most of the reduced nitrogen and sulfur are utilized in protein synthesis. Total uptake of potassium is greater than for any other mineral. Because of the immobility of calcium and boron, deficiency of these nutrients results in physiological decapitation (topping) and consequently increased nicotine content of leaves. Excessive amounts of nutrients can also produce some problems. Excessive nitrogen increases yield but it also increases the incidence of disease, delays flowering and leaf ripening, and lowers leaf quality. Excessive addition of lime causes a basic soil pH which increases disease incidence and limits availability of phosphorus, iron, manganese and zinc. Excessive chlorine increases the hygroscopic property of the leaf and reduces burn rate. Soil applied magnesium oxide may reduce potassium absorption and therefore reduce burn rate.

Uneingeschränkter Zugang

Physiology and Biochemistry of the Tabacco Plant3. Physiological Malfunctions: Environment - Physiologie und Biochemie der Tabakpflanze: 3. PhysiologischeStörungen: Umwelteinflüsse

Online veröffentlicht: 06 Jan 2015
Seitenbereich: 237 - 251

Zusammenfassung

Abstract

Environmental, biochemical and genetic abnormalities can induce physiological disorder in tobacco. Energy conversion results in production of many air pollutants including ozone which causes weather fleck. High incidence of weather fleck results in earlier flowering, lower yields and lower total alkaloids. More mature leaves are more tolerant to ozone damage than younger leaves. Tolerance to ozone is determined by genetic makeup of the shoot and abaxial stomata. plant damage from ozone or sulfur dioxide is enhanced by the presence of the other pollutant. Frenching is the formation of progressively narrower apical leaves. The cause of frenching is not known but the substance(s) appears to be leached from soils, similar to thallium induced chlorosis and narrow leaves, most active in soil above 35°C, and altering amino acid metabolism in the plant. Genetic tumours form on certain Nicotiana hybrids. These are not of economic importance to N. tabacum production but may be significant as interspecific hybridization is used to improve commercial tobaccos. Tumour formation appears to be controlled by genes on the chromosomes and show conventional segregation, linkage and mutation.

3 Artikel
Uneingeschränkter Zugang

Physiology and Biochemistry of the Tobacco Plant. 1. Growth and Development - Physiologie und Biochemie der Tabakpflanze: 1. Wachstum und Entwicklung

Online veröffentlicht: 06 Jan 2015
Seitenbereich: 197 - 209

Zusammenfassung

Abstract

Growth and development processes of a tobacco plant affect the chemical composition of the leaf and therefore the usability of the leaf. Growth starts with the initial stages of germination and development stops with the cured leaf. Most tobacco seed will germinate in the dark and the first seeds to germinate from a seed lot tend to produce larger plants for transplant and harvest. Nicotine is found in mature seed and increased rate of germination increases rate of nicotine accumulation in the young seedling. Carbon / nitrogen balance in the leaf is important for leaf usability and is influenced by available soil water and soil nitrogen. Oriental leaf is produced typically with limited water and nitrogen supply and the leaf contains large amounts of carbohydrates and ether solubles but small amounts of nitrogenous substances. Cigar filler tobacco is grown on soils with a plentiful supply of soil water and soil nitrogen and the leaf contains large amounts of nitrogenous substances. Intermediate to these tobacco types is flue-cured tobacco which is grown with limited soil nirogen but adequate water and the leaf is relatively thin with high carbohydrate content. Maximum rate of leaf expansion is achieved early in development of a leaf. In flue-cured tobacco phosphorus and potassium concentrations remain constant during growth, whereas nitrogen, calcium and magnesium concentrations decrease. In Oriental tobacco the concentrations of nitrogen, phosphorus, potassium and calcium decrease during the growing season. However, Burley tobacco accumulates relatively greater amounts of nitrogen, phosphorus and potassium during the first half of the growing season relative to dry matter accumulation. Maximum growth per unit leaf weight occurs 14 to 21 days after transplanting, whereas maximum dry matter accumulation per day occurs 50 to 55 days after transplanting. Leaf development including senescence is controlled genetically and decreased chlorophyll and protein and increased nicotine contents are important changes associated with leaf senescence. Maximum nicotine content of leaf occurs at successively higher stalk positions as the plant matures.

Uneingeschränkter Zugang

Physiology and Biochemistry of the Tobacco Plant. 2. Physiological Malfunctions: Mineral Nutrients - Physiologie und Biochemie der Tabakpflanze: 2. PhysiologischeStörungen: Mineralstoffe

Online veröffentlicht: 06 Jan 2015
Seitenbereich: 211 - 236

Zusammenfassung

Abstract

Quality tobacco leaf comes from plants grown with balanced mineral nutrition. The “structural nutrients” (carbon, hydrogen and oxygen) are approximately 90 % of the dry weight of cured leaf but are of little economic concern. The macronutrients (nitrogen, phosphorus, potassium, calcium, magnesium and sulfur) and the micronutrients (boron, chlorine, copper, iron, manganese, molybdenum and zinc) are of great economic concern and adequate amounts in the soil are essential for production of quality tobacco leaf. Nitrogen, phosphorus, potassium and magnesium are mobile within the plant and deficiency symptoms are observed first in the lower leaves and later in the upper leaves. Deficiency symptoms of the immobile nutrients calcium, boron, manganese, sulfur and iron are observed first on the upper leaves or terminal bud. Of all the mineral nutrients nitrogen has the greatest effect on shoot and root weight. As available nitrogen increases leaf nicotine increases and reducing sugars decrease; thus the sugar:nicotine ratio decreases dramatically. There is a positive relationship between amount of reduced nitrogen and reduced sulfur in the plant and this interaction is important as most of the reduced nitrogen and sulfur are utilized in protein synthesis. Total uptake of potassium is greater than for any other mineral. Because of the immobility of calcium and boron, deficiency of these nutrients results in physiological decapitation (topping) and consequently increased nicotine content of leaves. Excessive amounts of nutrients can also produce some problems. Excessive nitrogen increases yield but it also increases the incidence of disease, delays flowering and leaf ripening, and lowers leaf quality. Excessive addition of lime causes a basic soil pH which increases disease incidence and limits availability of phosphorus, iron, manganese and zinc. Excessive chlorine increases the hygroscopic property of the leaf and reduces burn rate. Soil applied magnesium oxide may reduce potassium absorption and therefore reduce burn rate.

Uneingeschränkter Zugang

Physiology and Biochemistry of the Tabacco Plant3. Physiological Malfunctions: Environment - Physiologie und Biochemie der Tabakpflanze: 3. PhysiologischeStörungen: Umwelteinflüsse

Online veröffentlicht: 06 Jan 2015
Seitenbereich: 237 - 251

Zusammenfassung

Abstract

Environmental, biochemical and genetic abnormalities can induce physiological disorder in tobacco. Energy conversion results in production of many air pollutants including ozone which causes weather fleck. High incidence of weather fleck results in earlier flowering, lower yields and lower total alkaloids. More mature leaves are more tolerant to ozone damage than younger leaves. Tolerance to ozone is determined by genetic makeup of the shoot and abaxial stomata. plant damage from ozone or sulfur dioxide is enhanced by the presence of the other pollutant. Frenching is the formation of progressively narrower apical leaves. The cause of frenching is not known but the substance(s) appears to be leached from soils, similar to thallium induced chlorosis and narrow leaves, most active in soil above 35°C, and altering amino acid metabolism in the plant. Genetic tumours form on certain Nicotiana hybrids. These are not of economic importance to N. tabacum production but may be significant as interspecific hybridization is used to improve commercial tobaccos. Tumour formation appears to be controlled by genes on the chromosomes and show conventional segregation, linkage and mutation.

Planen Sie Ihre Fernkonferenz mit Scienceendo