Wielomiedziowe oksydazy (MCO) stanowią dużą rodzinę niebieskich białek, a ich centrum katalityczne składa się z trzech domen: typu 1 Cu, typu II Cu oraz pary typu III Cu. Wśród MCO wyróżnia się lakazy, ferroksydazy, oksydazy askorbinianowe, oksydazy bilirubinowe oraz lakazopodobne wielomiedziowe oksydazy. Wielomiedziowe oksydazy katalizują reakcje utleniania aromatycznych jak i niearomatycznych związków z jednoczesną redukcją tlenu cząsteczkowego do wody. Właściwości te czynią je cennym narzędziem w wielu gałęziach przemysłu i ochronie środowiska.
1. Wprowadzenie. 2. Wielomiedziowe oksydazy – klasyfikacja, struktura i właściwości. 3. Metody identyfikacji enzymów z rodziny MCO. 4. Lakazy vs. inne MCO. 5. Zastosowanie wielomiedziowych oksydaz. 6. Podsumowanie
Data publikacji: 10 Jun 2019 Zakres stron: 19 - 28
Abstrakt
Streszczenie
Ważnymi peptydami odpornościowymi – HDP (Host Defence Peptides) o dużej aktywności biologicznej u ssaków, w tym człowieka i zwierząt kręgowych, są katelicydyny. Te stare ewolucyjnie cząsteczki efektorowe w tych organizmach, stanowią naturalne elementy odporności przeciwbakteryjnej, przeciwwirusowej, przeciwgrzybiczej i przeciwpasożytniczej, wobec których zarazki i pasożyty nie wykształciły oporności, co powoduje, że stają się one substancjami alternatywnymi dla antybiotyków. Katelicydyny u ludzi i zwierząt kręgowych, oddziaływują na zarazki i pasożyty bezpośrednio oraz pośrednio poprzez aktywowanie układu odpornościowego.
1. Co to są peptydy odpornościowe. 2. Katelicydyny 2.1. Katelicydyny u ludzi 2.2. Katelicydyny u zwierząt. 3. Podsumowanie
Data publikacji: 10 Jun 2019 Zakres stron: 29 - 34
Abstrakt
Streszczenie
W ciągu ostatnich kilku lat w piśmiennictwie zaczęły pojawiać się prace opisujące przypadki kliniczne zakażeń bakteriami dotychczas uznawanymi za niepatogenne. Dotychczas bakterie te powszechnie izolowano ze środowiska naturalnego: wody, gleby, roślin, a izolacja z próbki materiału klinicznego uznawana była często za zanieczyszczenie. Stąd, celem pracy było zwrócenie uwagi na nowo pojawiające się gatunki bakterii, ich cechy charakterystyczne, właściwości biochemiczne, czynniki wirulencji oraz predyspozycję do wybranych postaci zakażeń w grupach chorych z określonymi czynnikami ryzyka. Wpływ na częstszą izolację gatunków bakterii dotychczas uznawanych za niechorobotwórcze ma kilka aspektów: wiarygodne metody diagnostyczne, w tym prawidłowa identyfikacja do gatunku, pozwalająca na różnicowanie blisko spokrewnionych bakterii, rosnąca grupa osób z obniżoną odpornością i czynnikami ryzyka zakażeń (takimi jak podeszły wiek, cukrzyca, nowotwory, przeszczepienie narządów), bardziej podatnych na zakażenie, także drobnoustrojami o mniejszej chorobotwórczości. Nie bez znaczenia są również większe zdolności adaptacyjne bakterii do nowych warunków środowiskowych, w tym w organizmie człowieka. Wpływ ma także chorobotwórczość tych bakterii, głównie związana z wytwarzaniem biofilmu oraz czynników warunkujących adhezję do komórek gospodarza, czy biomateriałów, umożliwiając kolonizację i późniejsze zakażenie.
Postęp medycyny, jaki dokonał się w ostatnich latach korzystnie wpłynął na długość życia pacjentów z niektórymi chorobami i w wielu sytuacjach przyczynił się do poprawy jego jakości. Niestety, umożliwił także zakażenia bakteriami dotychczas uważanymi za mało lub niechorobotwórcze.
Data publikacji: 10 Jun 2019 Zakres stron: 35 - 48
Abstrakt
Streszczenie
Enterokoki to bakterie Gram-dodatnie, należące do względnie beztlenowych ziarniaków. Gatunki należące do rodzaju Enterococcus na ogół mają niewielki potencjał infekcyjny, jednak mogą wywoływać groźne zakażenia szpitalne. Do grupy podwyższonego ryzyka zalicza się pacjentów z chorobami rozrostowymi, z przewlekłymi chorobami wątroby oraz po przeszczepach. Od lat osiemdziesiątych XX w. obserwuje się pojawiające się coraz częściej zakażenia enterokokami opornymi na liczne antybiotyki. Istnieją dwie, niezależne od siebie drogi rozwoju oporności na wankomycynę, związane z powszechnym leczeniem MRSA przy pomocy wankomycyny oraz jej zastosowaniem pozamedycznym. Wśród opornych na wankomycynę szczepów enterokoków można wyróżnić 9 fenotypów: VanA, VanB, VanC, VanD, VanE, VanG, VanL, VanM, VanN. Wszystkie te fenotypy różnią się między sobą w większym lub mniejszym stopniu na poziomie molekularnym. Obecnie stosowanymi w leczeniu infekcji wywołanych enterokokami są m. in. linezolid, chinuprystyna/dalfoprystyna, daptomycyna, tigecyklina i chloramfenikol. Posiadane obecnie dane, zarówno z terenu Europy, jak i całego świata wskazują na stały wzrost ilości pojawiających się izolatów VRE, jak również opornych na antybiotyki inne niż wankomycyna.
1. Wprowadzenie. 2. Zakażenia enterokokami. 3. Leczenie zakażeń enterokokami i antybiotykooporność. 4. Rozwój zjawiska oporności na wankomycynę. 5. Leki stosowane w zwalczaniu zakażeń szczepami opornymi na wankomycynę. 6. Drogi powstawania oporności na wankomycynę. 7. Fenotypy szczepów opornych na wankomycynę. 8. Charakterystyka molekularna fenotypów szczepów opornych na wankomycynę. 9. Sytuacja epidemiologiczna na świecie. 10. Sytuacja epidemiologiczna w Polsce. 11. Sytuacja epidemiologiczna w Europie. 12. Podsumowanie
Data publikacji: 10 Jun 2019 Zakres stron: 49 - 58
Abstrakt
Streszczenie
Infekcje grzybicze skóry, włosów i paznokci cechuje najwyższa prewalencja wśród wszystkich grzybic dotykając obecnie ponad 20–25% populacji ludzi i zwierząt na świecie. Czynnikami etiologicznymi większości grzybiczych infekcji powierzchniowych są dermatofity. Spośród innych patogennych grzybów strzępkowych wyróżnia je unikalna właściwość rozkładu keratyny. Ogromna zdolność przetrwania w różnych ekosystemach grzybów tej grupy wynika z ich różnorodności morfologicznej, ekologicznej, jak również możliwości adaptacji do zmieniających się warunków środowiska. Dermatofity chociaż stanowią jedna z najstarszych grup mikroorganizmów długo nie doczekały się stabilnego systemu taksonomicznego. Co najważniejsze z klinicznego punktu widzenia, dermatofity wciąż przysparzają problemów diagnostycznych, co skutkuje błędami terapeutycznymi. Rosnąca liczba zakażeń, w tym również odzwierzęcych, brak stabilności taksonomicznej i niejednoznaczny obraz kliniczny niektórych przypadków dermatomykoz powodują konieczność poszukiwania nowych metod szybkiej, taniej i powtarzalnej identyfikacji gatunkowej tych grzybów. Z kolei identyfikacja gatunkowa determinowana jest jasnością kryteriów klasyfikacyjnych uwzględniających poglądy klinicystów, epidemiologów i mykologów. W niniejszej pracy Autorzy przedstawiają ewolucję systemów taksonomicznych dermatofitów na przestrzeni dziejów rozwoju mikrobiologii. Odkrywanie nowych faktów z zakresu biologii i ekologii dermatofitów, jak również rozwój technik możliwych do zastosowania w laboratorium diagnostyki mykologicznej skutkowały opracowaniem nowych strategii identyfikacyjnych. Współczesny system klasyfikacyjny tych patogenów oparty na badaniach molekularnych wydaje się być stabilny i szeroko akceptowany, czy jednak zakończy wiekowe zamieszanie klasyfikacyjne i okres setek zmian nomenklaturowych, będących koszmarem diagnostów? Można wnioskować, że taksonomia dermatofitów, zwłaszcza gatunków antropofilnych, jest już wystarczająco dojrzała, aby ustabilizować się z korzyścią zarówno dla klinicystów, jak i naukowców.
1. Wprowadzenie. 2. Pierwsze systemy klasyfikacji dermatofitów. 3. Fenotypowe systemy klasyfikacyjne. 4. „Biologiczna” era w klasyfikacji. 5. Ekologiczny podział dermatofitów. 6. Molekularna rewolucja w taksonomii dermatofitów. 7. Problemy taksonomiczne w mykologii. 8. Kliniczny aspekt taksonomii dermatofitów. 9. Obecnie obowiązujący system klasyfikacyjny. 10. Nierozróżnialne „kompleksy gatunków”. 11. Podsumowanie
Data publikacji: 10 Jun 2019 Zakres stron: 59 - 69
Abstrakt
Streszczenie
System korzeniowy roślin działa jak fabryka, która produkuje ogromną ilość związków chemicznych, aby skutecznie komunikować się z otaczającymi go/ją mikroorganizmami. Jednocześnie mikroorganizmy mogą wykorzystywać te związki jako źródło energii. Różnorodność drobnoustrojów związanych z korzeniami roślin jest ogromna, rzędu dziesiątek tysięcy gatunków. Tę złożoną społeczność drobnoustrojów, nazywany również drugim genomem rośliny, który ma zasadnicze znaczenie dla zdrowia i produktywności roślin. W ciągu ostatnich kilku lat nastąpił znaczny postęp w zakresie badań dotyczących struktury mikrobiomów ryzosfery i ich dynamiki. Udowodniono, że rośliny kształtują skład mikroorganizmów poprzez syntezę wydzielin korzeniowych. Natomiast drobnoustroje odgrywają kluczową rolę w funkcjonowaniu roślin poprzez pozytywne oddziaływanie na ich wzrost i rozwój. Ogólnie, mikroorganizmy ryzosferowe promują wzrost roślin bezpośrednio poprzez udostępnianie roślinom składników mineralnych m.in. azotu i fosforu oraz syntetyzowanie regulatorów wzrostu. Natomiast pośrednio poprzez hamowanie rozwoju różnych patogenów roślin.
Data publikacji: 10 Jun 2019 Zakres stron: 70 - 79
Abstrakt
Streszczenie
Fitodegradacja to przyjazna dla środowiska technologia, opierająca się na zdolności roślin do transformacji pobranych przez korzenie zanieczyszczeń organicznych. Istotną rolę we wspomaganiu procesów fitodegradacji mogą pełnić, budzące coraz większe zainteresowanie, bakterie endofityczne, kolonizujące wewnętrzne tkanki roślin bez wywoływania objawów chorobowych. Bakterie endofityczne wyposażone w odpowiednie szlaki metaboliczne, przyczyniają się do degradacji wielu różnych klas związków organicznych, w tym: wielopierścieniowych węglowodorów aromatycznych, lotnych i monopierścieniowych związków organicznych, materiałów wybuchowych czy pestycydów. Mogą również wspomagać bioremediację gazów cieplarnianych, takich jak metan i dwutlenek węgla. Ponadto, bakterie endofityczne mogą wspierać wzrost i rozwój roślin poprzez szeroki zakres bezpośrednich i pośrednich mechanizmów, co również wpływa na efektywność procesów fitodegradacji.
1. Wprowadzenie. 2. Fitodegradacja zanieczyszczeń organicznych. 3. Źródła bakterii endofitycznych wspomagających procesy fitodegradacji. 4. Zanieczyszczenia organiczne degradowane przez bakterie endofityczne. 5. Genetyczne uwarunkowania degradacji ksenobiotyków przez endofity. 6. Mechanizmy wpływające na efektywność fitodegradacji wspomaganej przez endofity bakteryjne. 7. Podsumowanie
Data publikacji: 10 Jun 2019 Zakres stron: 80 - 85
Abstrakt
Streszczenie
Maszyneria produkcji antybiotyku przez przemysłowy szczep Penicillium chrysogenum PQ-96 jest złożona z zlokalizowanych cytozolowych i peroksysomalnych enzymów szlaku biosyntezy penicyliny G. Peksofagia i egzocytoza powinny być obecnie wzięte pod uwagę jako alternatywa dla sekrecji penicyliny G. Wysokowydajna produkcja penicyliny G jest procesem detoksykacyjnym chroniącym komórki producenta przed toksycznym prekursorem antybiotyku.
1. Wprowadzenie. 2. Rola peroksysomów i biosynteza penicyliny G. 3. Mikroskopia immunoelektronowa syntazy izopenicyliny N. 4. Ultrastrukturalna lokalizacja peroksyzomów. 5. Peksofagia i egzocytoza. 6. Wnioski
Data publikacji: 10 Jun 2019 Zakres stron: 87 - 100
Abstrakt
Streszczenie
Szybki rozwój rynku farmaceutycznego w zakresie biofarmaceutyków jest powiązany z rosnącą liczbą i dostępnością opracowanych technologii ich wytwarzania. Jednym z podstawowych sposobów produkowania białek o właściwościach terapeutycznych jest wykorzystywanie bakteryjnych systemów ekspresyjnych. W celu zapewnienia jednolitego materiału wyjściowego dla całego procesu technologicznego konieczne jest założenie banków komórek z zachowaniem odpowiednich standardów jakościowych. Macierzysty bank komórek (MCB – Master Cell Bank) tworzony jest jako pierwszy w ściśle określonych warunkach na podstawie szczegółowo opisanych procedur, z pojedynczej dobrze wyselekcjonowanej i scharakteryzowanej kolonii bakteryjnej. Roboczy bank komórek (WCB – Working Cell Bank) przygotowywany jest w drugiej kolejności, z jednej lub kilku probówek MCB. Banki te muszą być scharakteryzowane pod względem właściwości szczepu bakteryjnego oraz być wolne od zakażeń krzyżowych. W poniższej pracy nakreślono podstawowe założenia oraz wskazano na dobre praktyki mające na celu przygotowanie banku komórek zapewniającego stabilną i powtarzalną produkcję biofarmaceutyku.
Data publikacji: 15 Oct 2019 Zakres stron: 101 - 110
Abstrakt
Streszczenie
Zakażenia szpitalne (Hospital-Acquired Infections – HAI) stanowią poważny problem zdrowia publicznego. Problem ten dotyka setki milionów ludzi każdego roku i często prowadzi do wielu poważnych komplikacji zdrowotnych. Proces dezynfekcji, który jest podstawą zabiegów sanitarnych i higienicznych w placówkach medycznych, takich jak szpitale, przychodnie, gabinety stomatologiczne itp. jest ważnym elementem zapobiegania i zwalczania zakażeń wirusowych. Dezynfekcja jest złożonym procesem, na skuteczność którego ma wpływ wiele czynników. Środek dezynfekcyjny oprócz tego, że wymaga odpowiedniego stosowania, musi również spełniać pewne kryteria, w tym szeroki zakres aktywności biobójczej potwierdzony przez dobrze znane i dobrze zaprojektowane metody badawcze.
Wielomiedziowe oksydazy (MCO) stanowią dużą rodzinę niebieskich białek, a ich centrum katalityczne składa się z trzech domen: typu 1 Cu, typu II Cu oraz pary typu III Cu. Wśród MCO wyróżnia się lakazy, ferroksydazy, oksydazy askorbinianowe, oksydazy bilirubinowe oraz lakazopodobne wielomiedziowe oksydazy. Wielomiedziowe oksydazy katalizują reakcje utleniania aromatycznych jak i niearomatycznych związków z jednoczesną redukcją tlenu cząsteczkowego do wody. Właściwości te czynią je cennym narzędziem w wielu gałęziach przemysłu i ochronie środowiska.
1. Wprowadzenie. 2. Wielomiedziowe oksydazy – klasyfikacja, struktura i właściwości. 3. Metody identyfikacji enzymów z rodziny MCO. 4. Lakazy vs. inne MCO. 5. Zastosowanie wielomiedziowych oksydaz. 6. Podsumowanie
Ważnymi peptydami odpornościowymi – HDP (Host Defence Peptides) o dużej aktywności biologicznej u ssaków, w tym człowieka i zwierząt kręgowych, są katelicydyny. Te stare ewolucyjnie cząsteczki efektorowe w tych organizmach, stanowią naturalne elementy odporności przeciwbakteryjnej, przeciwwirusowej, przeciwgrzybiczej i przeciwpasożytniczej, wobec których zarazki i pasożyty nie wykształciły oporności, co powoduje, że stają się one substancjami alternatywnymi dla antybiotyków. Katelicydyny u ludzi i zwierząt kręgowych, oddziaływują na zarazki i pasożyty bezpośrednio oraz pośrednio poprzez aktywowanie układu odpornościowego.
1. Co to są peptydy odpornościowe. 2. Katelicydyny 2.1. Katelicydyny u ludzi 2.2. Katelicydyny u zwierząt. 3. Podsumowanie
W ciągu ostatnich kilku lat w piśmiennictwie zaczęły pojawiać się prace opisujące przypadki kliniczne zakażeń bakteriami dotychczas uznawanymi za niepatogenne. Dotychczas bakterie te powszechnie izolowano ze środowiska naturalnego: wody, gleby, roślin, a izolacja z próbki materiału klinicznego uznawana była często za zanieczyszczenie. Stąd, celem pracy było zwrócenie uwagi na nowo pojawiające się gatunki bakterii, ich cechy charakterystyczne, właściwości biochemiczne, czynniki wirulencji oraz predyspozycję do wybranych postaci zakażeń w grupach chorych z określonymi czynnikami ryzyka. Wpływ na częstszą izolację gatunków bakterii dotychczas uznawanych za niechorobotwórcze ma kilka aspektów: wiarygodne metody diagnostyczne, w tym prawidłowa identyfikacja do gatunku, pozwalająca na różnicowanie blisko spokrewnionych bakterii, rosnąca grupa osób z obniżoną odpornością i czynnikami ryzyka zakażeń (takimi jak podeszły wiek, cukrzyca, nowotwory, przeszczepienie narządów), bardziej podatnych na zakażenie, także drobnoustrojami o mniejszej chorobotwórczości. Nie bez znaczenia są również większe zdolności adaptacyjne bakterii do nowych warunków środowiskowych, w tym w organizmie człowieka. Wpływ ma także chorobotwórczość tych bakterii, głównie związana z wytwarzaniem biofilmu oraz czynników warunkujących adhezję do komórek gospodarza, czy biomateriałów, umożliwiając kolonizację i późniejsze zakażenie.
Postęp medycyny, jaki dokonał się w ostatnich latach korzystnie wpłynął na długość życia pacjentów z niektórymi chorobami i w wielu sytuacjach przyczynił się do poprawy jego jakości. Niestety, umożliwił także zakażenia bakteriami dotychczas uważanymi za mało lub niechorobotwórcze.
Enterokoki to bakterie Gram-dodatnie, należące do względnie beztlenowych ziarniaków. Gatunki należące do rodzaju Enterococcus na ogół mają niewielki potencjał infekcyjny, jednak mogą wywoływać groźne zakażenia szpitalne. Do grupy podwyższonego ryzyka zalicza się pacjentów z chorobami rozrostowymi, z przewlekłymi chorobami wątroby oraz po przeszczepach. Od lat osiemdziesiątych XX w. obserwuje się pojawiające się coraz częściej zakażenia enterokokami opornymi na liczne antybiotyki. Istnieją dwie, niezależne od siebie drogi rozwoju oporności na wankomycynę, związane z powszechnym leczeniem MRSA przy pomocy wankomycyny oraz jej zastosowaniem pozamedycznym. Wśród opornych na wankomycynę szczepów enterokoków można wyróżnić 9 fenotypów: VanA, VanB, VanC, VanD, VanE, VanG, VanL, VanM, VanN. Wszystkie te fenotypy różnią się między sobą w większym lub mniejszym stopniu na poziomie molekularnym. Obecnie stosowanymi w leczeniu infekcji wywołanych enterokokami są m. in. linezolid, chinuprystyna/dalfoprystyna, daptomycyna, tigecyklina i chloramfenikol. Posiadane obecnie dane, zarówno z terenu Europy, jak i całego świata wskazują na stały wzrost ilości pojawiających się izolatów VRE, jak również opornych na antybiotyki inne niż wankomycyna.
1. Wprowadzenie. 2. Zakażenia enterokokami. 3. Leczenie zakażeń enterokokami i antybiotykooporność. 4. Rozwój zjawiska oporności na wankomycynę. 5. Leki stosowane w zwalczaniu zakażeń szczepami opornymi na wankomycynę. 6. Drogi powstawania oporności na wankomycynę. 7. Fenotypy szczepów opornych na wankomycynę. 8. Charakterystyka molekularna fenotypów szczepów opornych na wankomycynę. 9. Sytuacja epidemiologiczna na świecie. 10. Sytuacja epidemiologiczna w Polsce. 11. Sytuacja epidemiologiczna w Europie. 12. Podsumowanie
Infekcje grzybicze skóry, włosów i paznokci cechuje najwyższa prewalencja wśród wszystkich grzybic dotykając obecnie ponad 20–25% populacji ludzi i zwierząt na świecie. Czynnikami etiologicznymi większości grzybiczych infekcji powierzchniowych są dermatofity. Spośród innych patogennych grzybów strzępkowych wyróżnia je unikalna właściwość rozkładu keratyny. Ogromna zdolność przetrwania w różnych ekosystemach grzybów tej grupy wynika z ich różnorodności morfologicznej, ekologicznej, jak również możliwości adaptacji do zmieniających się warunków środowiska. Dermatofity chociaż stanowią jedna z najstarszych grup mikroorganizmów długo nie doczekały się stabilnego systemu taksonomicznego. Co najważniejsze z klinicznego punktu widzenia, dermatofity wciąż przysparzają problemów diagnostycznych, co skutkuje błędami terapeutycznymi. Rosnąca liczba zakażeń, w tym również odzwierzęcych, brak stabilności taksonomicznej i niejednoznaczny obraz kliniczny niektórych przypadków dermatomykoz powodują konieczność poszukiwania nowych metod szybkiej, taniej i powtarzalnej identyfikacji gatunkowej tych grzybów. Z kolei identyfikacja gatunkowa determinowana jest jasnością kryteriów klasyfikacyjnych uwzględniających poglądy klinicystów, epidemiologów i mykologów. W niniejszej pracy Autorzy przedstawiają ewolucję systemów taksonomicznych dermatofitów na przestrzeni dziejów rozwoju mikrobiologii. Odkrywanie nowych faktów z zakresu biologii i ekologii dermatofitów, jak również rozwój technik możliwych do zastosowania w laboratorium diagnostyki mykologicznej skutkowały opracowaniem nowych strategii identyfikacyjnych. Współczesny system klasyfikacyjny tych patogenów oparty na badaniach molekularnych wydaje się być stabilny i szeroko akceptowany, czy jednak zakończy wiekowe zamieszanie klasyfikacyjne i okres setek zmian nomenklaturowych, będących koszmarem diagnostów? Można wnioskować, że taksonomia dermatofitów, zwłaszcza gatunków antropofilnych, jest już wystarczająco dojrzała, aby ustabilizować się z korzyścią zarówno dla klinicystów, jak i naukowców.
1. Wprowadzenie. 2. Pierwsze systemy klasyfikacji dermatofitów. 3. Fenotypowe systemy klasyfikacyjne. 4. „Biologiczna” era w klasyfikacji. 5. Ekologiczny podział dermatofitów. 6. Molekularna rewolucja w taksonomii dermatofitów. 7. Problemy taksonomiczne w mykologii. 8. Kliniczny aspekt taksonomii dermatofitów. 9. Obecnie obowiązujący system klasyfikacyjny. 10. Nierozróżnialne „kompleksy gatunków”. 11. Podsumowanie
System korzeniowy roślin działa jak fabryka, która produkuje ogromną ilość związków chemicznych, aby skutecznie komunikować się z otaczającymi go/ją mikroorganizmami. Jednocześnie mikroorganizmy mogą wykorzystywać te związki jako źródło energii. Różnorodność drobnoustrojów związanych z korzeniami roślin jest ogromna, rzędu dziesiątek tysięcy gatunków. Tę złożoną społeczność drobnoustrojów, nazywany również drugim genomem rośliny, który ma zasadnicze znaczenie dla zdrowia i produktywności roślin. W ciągu ostatnich kilku lat nastąpił znaczny postęp w zakresie badań dotyczących struktury mikrobiomów ryzosfery i ich dynamiki. Udowodniono, że rośliny kształtują skład mikroorganizmów poprzez syntezę wydzielin korzeniowych. Natomiast drobnoustroje odgrywają kluczową rolę w funkcjonowaniu roślin poprzez pozytywne oddziaływanie na ich wzrost i rozwój. Ogólnie, mikroorganizmy ryzosferowe promują wzrost roślin bezpośrednio poprzez udostępnianie roślinom składników mineralnych m.in. azotu i fosforu oraz syntetyzowanie regulatorów wzrostu. Natomiast pośrednio poprzez hamowanie rozwoju różnych patogenów roślin.
Fitodegradacja to przyjazna dla środowiska technologia, opierająca się na zdolności roślin do transformacji pobranych przez korzenie zanieczyszczeń organicznych. Istotną rolę we wspomaganiu procesów fitodegradacji mogą pełnić, budzące coraz większe zainteresowanie, bakterie endofityczne, kolonizujące wewnętrzne tkanki roślin bez wywoływania objawów chorobowych. Bakterie endofityczne wyposażone w odpowiednie szlaki metaboliczne, przyczyniają się do degradacji wielu różnych klas związków organicznych, w tym: wielopierścieniowych węglowodorów aromatycznych, lotnych i monopierścieniowych związków organicznych, materiałów wybuchowych czy pestycydów. Mogą również wspomagać bioremediację gazów cieplarnianych, takich jak metan i dwutlenek węgla. Ponadto, bakterie endofityczne mogą wspierać wzrost i rozwój roślin poprzez szeroki zakres bezpośrednich i pośrednich mechanizmów, co również wpływa na efektywność procesów fitodegradacji.
1. Wprowadzenie. 2. Fitodegradacja zanieczyszczeń organicznych. 3. Źródła bakterii endofitycznych wspomagających procesy fitodegradacji. 4. Zanieczyszczenia organiczne degradowane przez bakterie endofityczne. 5. Genetyczne uwarunkowania degradacji ksenobiotyków przez endofity. 6. Mechanizmy wpływające na efektywność fitodegradacji wspomaganej przez endofity bakteryjne. 7. Podsumowanie
Maszyneria produkcji antybiotyku przez przemysłowy szczep Penicillium chrysogenum PQ-96 jest złożona z zlokalizowanych cytozolowych i peroksysomalnych enzymów szlaku biosyntezy penicyliny G. Peksofagia i egzocytoza powinny być obecnie wzięte pod uwagę jako alternatywa dla sekrecji penicyliny G. Wysokowydajna produkcja penicyliny G jest procesem detoksykacyjnym chroniącym komórki producenta przed toksycznym prekursorem antybiotyku.
1. Wprowadzenie. 2. Rola peroksysomów i biosynteza penicyliny G. 3. Mikroskopia immunoelektronowa syntazy izopenicyliny N. 4. Ultrastrukturalna lokalizacja peroksyzomów. 5. Peksofagia i egzocytoza. 6. Wnioski
Szybki rozwój rynku farmaceutycznego w zakresie biofarmaceutyków jest powiązany z rosnącą liczbą i dostępnością opracowanych technologii ich wytwarzania. Jednym z podstawowych sposobów produkowania białek o właściwościach terapeutycznych jest wykorzystywanie bakteryjnych systemów ekspresyjnych. W celu zapewnienia jednolitego materiału wyjściowego dla całego procesu technologicznego konieczne jest założenie banków komórek z zachowaniem odpowiednich standardów jakościowych. Macierzysty bank komórek (MCB – Master Cell Bank) tworzony jest jako pierwszy w ściśle określonych warunkach na podstawie szczegółowo opisanych procedur, z pojedynczej dobrze wyselekcjonowanej i scharakteryzowanej kolonii bakteryjnej. Roboczy bank komórek (WCB – Working Cell Bank) przygotowywany jest w drugiej kolejności, z jednej lub kilku probówek MCB. Banki te muszą być scharakteryzowane pod względem właściwości szczepu bakteryjnego oraz być wolne od zakażeń krzyżowych. W poniższej pracy nakreślono podstawowe założenia oraz wskazano na dobre praktyki mające na celu przygotowanie banku komórek zapewniającego stabilną i powtarzalną produkcję biofarmaceutyku.
Zakażenia szpitalne (Hospital-Acquired Infections – HAI) stanowią poważny problem zdrowia publicznego. Problem ten dotyka setki milionów ludzi każdego roku i często prowadzi do wielu poważnych komplikacji zdrowotnych. Proces dezynfekcji, który jest podstawą zabiegów sanitarnych i higienicznych w placówkach medycznych, takich jak szpitale, przychodnie, gabinety stomatologiczne itp. jest ważnym elementem zapobiegania i zwalczania zakażeń wirusowych. Dezynfekcja jest złożonym procesem, na skuteczność którego ma wpływ wiele czynników. Środek dezynfekcyjny oprócz tego, że wymaga odpowiedniego stosowania, musi również spełniać pewne kryteria, w tym szeroki zakres aktywności biobójczej potwierdzony przez dobrze znane i dobrze zaprojektowane metody badawcze.