Issues

Journal & Issues

Volume 22 (2022): Issue 5 (October 2022)

Volume 22 (2022): Issue 4 (August 2022)

Volume 22 (2022): Issue 3 (June 2022)

Volume 22 (2022): Issue 2 (April 2022)

Volume 22 (2022): Issue 1 (February 2022)

Volume 21 (2021): Issue 6 (December 2021)

Volume 21 (2021): Issue 5 (October 2021)

Volume 21 (2021): Issue 4 (August 2021)

Volume 21 (2021): Issue 3 (June 2021)

Volume 21 (2021): Issue 2 (April 2021)

Volume 21 (2021): Issue 1 (February 2021)

Volume 20 (2020): Issue 5 (October 2020)

Volume 20 (2020): Issue 4 (August 2020)

Volume 20 (2020): Issue 3 (June 2020)

Volume 20 (2020): Issue 2 (April 2020)

Volume 20 (2020): Issue 1 (February 2020)

Volume 19 (2019): Issue 6 (December 2019)

Volume 19 (2019): Issue 5 (October 2019)

Volume 19 (2019): Issue 4 (August 2019)

Volume 19 (2019): Issue 3 (June 2019)

Volume 19 (2019): Issue 2 (April 2019)

Volume 19 (2019): Issue 1 (February 2019)

Volume 18 (2018): Issue 6 (October 2018)

Volume 18 (2018): Issue 5 (October 2018)

Volume 18 (2018): Issue 4 (August 2018)

Volume 18 (2018): Issue 3 (June 2018)

Volume 18 (2018): Issue 2 (April 2018)

Volume 18 (2018): Issue 1 (February 2018)

Volume 17 (2017): Issue 6 (December 2017)

Volume 17 (2017): Issue 5 (October 2017)

Volume 17 (2017): Issue 3 (June 2017)

Volume 17 (2017): Issue 2 (April 2017)

Volume 17 (2017): Issue 1 (February 2017)

Volume 16 (2016): Issue 6 (December 2016)

Volume 16 (2016): Issue 5 (October 2016)

Volume 16 (2016): Issue 4 (August 2016)

Volume 16 (2016): Issue 3 (June 2016)

Volume 16 (2016): Issue 2 (April 2016)

Volume 16 (2016): Issue 1 (February 2016)

Volume 15 (2015): Issue 6 (December 2015)

Volume 15 (2015): Issue 5 (October 2015)

Volume 15 (2015): Issue 4 (August 2015)

Volume 15 (2015): Issue 3 (June 2015)

Volume 15 (2015): Issue 2 (April 2015)

Volume 15 (2015): Issue 1 (February 2015)

Volume 14 (2014): Issue 6 (December 2014)

Volume 14 (2014): Issue 5 (October 2014)

Volume 14 (2014): Issue 4 (August 2014)

Volume 14 (2014): Issue 3 (June 2014)

Volume 14 (2014): Issue 2 (April 2014)

Volume 14 (2014): Issue 1 (February 2014)

Volume 13 (2013): Issue 6 (December 2013)

Volume 13 (2013): Issue 5 (October 2013)

Volume 13 (2013): Issue 4 (August 2013)

Volume 13 (2013): Issue 3 (June 2013)

Volume 13 (2013): Issue 2 (April 2013)

Volume 13 (2013): Issue 1 (February 2013)

Volume 12 (2012): Issue 6 (December 2012)

Volume 12 (2012): Issue 5 (October 2012)

Volume 12 (2012): Issue 4 (August 2012)

Volume 12 (2012): Issue 3 (June 2012)

Volume 12 (2012): Issue 2 (April 2012)

Volume 12 (2012): Issue 1 (February 2012)

Volume 11 (2011): Issue 6 (December 2011)

Volume 11 (2011): Issue 5 (October 2011)

Volume 11 (2011): Issue 4 (August 2011)

Volume 11 (2011): Issue 3 (June 2011)

Volume 11 (2011): Issue 2 (April 2011)

Volume 11 (2011): Issue 1 (February 2011)

Volume 10 (2010): Issue 6 (December 2010)

Volume 10 (2010): Issue 5 (October 2010)

Volume 10 (2010): Issue 4 (August 2010)

Volume 10 (2010): Issue 3 (June 2010)

Volume 10 (2010): Issue 2 (April 2010)

Volume 10 (2010): Issue 1 (February 2010)

Volume 9 (2009): Issue 6 (December 2009)

Volume 9 (2009): Issue 5 (October 2009)

Volume 9 (2009): Issue 4 (August 2009)

Volume 9 (2009): Issue 3 (June 2009)

Volume 9 (2009): Issue 2 (April 2009)

Volume 9 (2009): Issue 1 (February 2009)

Volume 8 (2008): Issue 6 (December 2008)

Volume 8 (2008): Issue 5 (October 2008)

Volume 8 (2008): Issue 4 (August 2008)

Volume 8 (2008): Issue 3 (June 2008)

Volume 8 (2008): Issue 2 (April 2008)

Volume 8 (2008): Issue 1 (February 2008)

Journal Details
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English

Search

Volume 15 (2015): Issue 5 (October 2015)

Journal Details
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English

Search

7 Articles
access type Open Access

Improvement of Simulation Method in Validation of Software of the Coordinate Measuring Systems

Published Online: 29 Oct 2015
Page range: 226 - 235

Abstract

Abstract

Software is used in order to accomplish various tasks at each stage of the functioning of modern measuring systems. Before metrological confirmation of measuring equipment, the system has to be validated. This paper discusses the method for conducting validation studies of a fragment of software to calculate the values of measurands. Due to the number and nature of the variables affecting the coordinate measurement results and the complex character and multi-dimensionality of measurands, the study used the Monte Carlo method of numerical simulation. The article presents an attempt of possible improvement of results obtained by classic Monte Carlo tools. The algorithm LHS (Latin Hypercube Sampling) was implemented as alternative to the simple sampling schema of classic algorithm.

Keywords

  • Validation
  • coordinate measuring technique
  • Monte Carlo simulation
access type Open Access

Rotating Shaft Tilt Angle Measurement Using an Inclinometer

Published Online: 29 Oct 2015
Page range: 236 - 243

Abstract

Abstract

This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

Keywords

  • Rotating shaft
  • tilt angle measurement
  • inclinometer
  • reversal measurement
  • uncertainty estimation.
access type Open Access

Single Pulse Calibration of Magnetic Field Sensors Using Mobile 43 kJ Facility

Published Online: 29 Oct 2015
Page range: 244 - 247

Abstract

Abstract

In this work we present a mobile 43 kJ pulsed magnetic field facility for single pulse calibration of magnetic field sensors. The magnetic field generator is capable of generating magnetic fields up to 40 T with pulse durations in the range of 0.3-2 ms. The high power crowbar circuit is used for the reverse voltage protection and pulse shaping purposes. The structure, the development challenges and the implemented solutions to improve the facility for the calibration of the magnetic field sensors are overviewed. The experimental data of the application of the proposed generator for the calibration of manganite magnetic field sensors are presented.

Keywords

  • Magnetic field measurement
  • calibration
  • sensor
  • high power
access type Open Access

Design and Analysis of a Micromechanical Three-Component Force Sensor for Characterizing and Quantifying Surface Roughness

Published Online: 29 Oct 2015
Page range: 248 - 255

Abstract

Abstract

Roughness, which can represent the trade-off between manufacturing cost and performance of mechanical components, is a critical predictor of cracks, corrosion and fatigue damage. In order to measure polished or super-finished surfaces, a novel touch probe based on three-component force sensor for characterizing and quantifying surface roughness is proposed by using silicon micromachining technology. The sensor design is based on a cross-beam structure, which ensures that the system possesses high sensitivity and low coupling. The results show that the proposed sensor possesses high sensitivity, low coupling error, and temperature compensation function. The proposed system can be used to investigate micromechanical structures with nanometer accuracy.

Keywords

  • Surface roughness metrology
  • multi-component force sensor
  • Finite element analysis
access type Open Access

Design and Testing of the Strain Transducer for Measuring Deformations of Pipelines Operating in the Mining-deformable Ground Environment

Published Online: 29 Oct 2015
Page range: 256 - 262

Abstract

Abstract

Design and laboratory test results of the strain transducer intended for monitoring and assessing stress states of pipelines sited in mining areas are presented in this paper. This transducer allows measuring strains of pipelines subjected to external forces - being the mining operations effect. Pipeline strains can have a direct influence on a tightness loss and penetration of the transported fluid into the environment. The original strain gauge transducer was proposed for performing measurements of strains. It allows measuring circumferential strains and determining the value and direction of the main longitudinal strain. This strain is determined on the basis of measuring component longitudinal strains originating from axial forces and the resultant bending moment. The main purpose of investigations was the experimental verification of the possibility of applying the strain transducer for measuring strains of polyethylene pipelines. The obtained results of the transducer subjected to influences of tensile and compression forces are presented and tests of relaxation properties of polyethylene are performed.

Keywords

  • Strain transducer
  • pipeline
  • polyethylene
  • strain
  • stress
  • strain gauge
access type Open Access

Contribution of the Refractive Index Fluctuations to the Length Noise in Displacement Interferometry

Published Online: 29 Oct 2015
Page range: 263 - 267

Abstract

Abstract

We report on investigations of how fast changes of the refractive index influence the uncertainty of interferometric displacement measurements. Measurement of position within a limited range is typical for precise positioning of coordinate measuring systems, such as nanometrology standards combined with scanning probe microscopy (SPM). The varying refractive index of air contributes significantly to the overall uncertainty; it plays a role especially in case of longer-range systems. In our experiments we have observed that its fast variations, seen as length noise, are not linearly proportional to the measuring beam path and play a significant role only over distances longer than 50 mm. Thus, we found that over longer distances the length noise rises proportionally. The measurements were performed under conditions typical for metrology SPM systems

Keywords

  • Nanometrology
  • interferometry
  • refractive index of air
access type Open Access

Novel Method for Sizing Metallic Bottom Crack Depth Using Multi-frequency Alternating Current Potential Drop Technique

Published Online: 29 Oct 2015
Page range: 268 - 268

Abstract

Abstract

Potential drop techniques are of two types: the direct current potential drop (DCPD) technique and alternating current potential drop (ACPD) technique, and both of them are used in nondestructive testing. ACPD, as a kind of valid method in sizing metal cracks, has been applied to evaluate metal structures. However, our review of most available approaches revealed that some improvements can be done in measuring depth of metal bottom crack by means of ACPD, such as accuracy and sensitivity of shallow crack. This paper studied a novel method which utilized the slope of voltage ratio-frequency curve to solve bottom crack depth by using a simple mathematic equation based on finite element analysis. It is found that voltage ratio varies linearly with frequency in the range of 5-15 Hz; this range is slightly higher than the equivalent frequency and lower than semi-permeable frequency. Simulation and experiment show that the novel method can measure the bottom crack depth accurately.

Keywords

  • Nondestructive testing
  • alternating current potential drop technique
  • bottom crack
  • depth measurement
7 Articles
access type Open Access

Improvement of Simulation Method in Validation of Software of the Coordinate Measuring Systems

Published Online: 29 Oct 2015
Page range: 226 - 235

Abstract

Abstract

Software is used in order to accomplish various tasks at each stage of the functioning of modern measuring systems. Before metrological confirmation of measuring equipment, the system has to be validated. This paper discusses the method for conducting validation studies of a fragment of software to calculate the values of measurands. Due to the number and nature of the variables affecting the coordinate measurement results and the complex character and multi-dimensionality of measurands, the study used the Monte Carlo method of numerical simulation. The article presents an attempt of possible improvement of results obtained by classic Monte Carlo tools. The algorithm LHS (Latin Hypercube Sampling) was implemented as alternative to the simple sampling schema of classic algorithm.

Keywords

  • Validation
  • coordinate measuring technique
  • Monte Carlo simulation
access type Open Access

Rotating Shaft Tilt Angle Measurement Using an Inclinometer

Published Online: 29 Oct 2015
Page range: 236 - 243

Abstract

Abstract

This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

Keywords

  • Rotating shaft
  • tilt angle measurement
  • inclinometer
  • reversal measurement
  • uncertainty estimation.
access type Open Access

Single Pulse Calibration of Magnetic Field Sensors Using Mobile 43 kJ Facility

Published Online: 29 Oct 2015
Page range: 244 - 247

Abstract

Abstract

In this work we present a mobile 43 kJ pulsed magnetic field facility for single pulse calibration of magnetic field sensors. The magnetic field generator is capable of generating magnetic fields up to 40 T with pulse durations in the range of 0.3-2 ms. The high power crowbar circuit is used for the reverse voltage protection and pulse shaping purposes. The structure, the development challenges and the implemented solutions to improve the facility for the calibration of the magnetic field sensors are overviewed. The experimental data of the application of the proposed generator for the calibration of manganite magnetic field sensors are presented.

Keywords

  • Magnetic field measurement
  • calibration
  • sensor
  • high power
access type Open Access

Design and Analysis of a Micromechanical Three-Component Force Sensor for Characterizing and Quantifying Surface Roughness

Published Online: 29 Oct 2015
Page range: 248 - 255

Abstract

Abstract

Roughness, which can represent the trade-off between manufacturing cost and performance of mechanical components, is a critical predictor of cracks, corrosion and fatigue damage. In order to measure polished or super-finished surfaces, a novel touch probe based on three-component force sensor for characterizing and quantifying surface roughness is proposed by using silicon micromachining technology. The sensor design is based on a cross-beam structure, which ensures that the system possesses high sensitivity and low coupling. The results show that the proposed sensor possesses high sensitivity, low coupling error, and temperature compensation function. The proposed system can be used to investigate micromechanical structures with nanometer accuracy.

Keywords

  • Surface roughness metrology
  • multi-component force sensor
  • Finite element analysis
access type Open Access

Design and Testing of the Strain Transducer for Measuring Deformations of Pipelines Operating in the Mining-deformable Ground Environment

Published Online: 29 Oct 2015
Page range: 256 - 262

Abstract

Abstract

Design and laboratory test results of the strain transducer intended for monitoring and assessing stress states of pipelines sited in mining areas are presented in this paper. This transducer allows measuring strains of pipelines subjected to external forces - being the mining operations effect. Pipeline strains can have a direct influence on a tightness loss and penetration of the transported fluid into the environment. The original strain gauge transducer was proposed for performing measurements of strains. It allows measuring circumferential strains and determining the value and direction of the main longitudinal strain. This strain is determined on the basis of measuring component longitudinal strains originating from axial forces and the resultant bending moment. The main purpose of investigations was the experimental verification of the possibility of applying the strain transducer for measuring strains of polyethylene pipelines. The obtained results of the transducer subjected to influences of tensile and compression forces are presented and tests of relaxation properties of polyethylene are performed.

Keywords

  • Strain transducer
  • pipeline
  • polyethylene
  • strain
  • stress
  • strain gauge
access type Open Access

Contribution of the Refractive Index Fluctuations to the Length Noise in Displacement Interferometry

Published Online: 29 Oct 2015
Page range: 263 - 267

Abstract

Abstract

We report on investigations of how fast changes of the refractive index influence the uncertainty of interferometric displacement measurements. Measurement of position within a limited range is typical for precise positioning of coordinate measuring systems, such as nanometrology standards combined with scanning probe microscopy (SPM). The varying refractive index of air contributes significantly to the overall uncertainty; it plays a role especially in case of longer-range systems. In our experiments we have observed that its fast variations, seen as length noise, are not linearly proportional to the measuring beam path and play a significant role only over distances longer than 50 mm. Thus, we found that over longer distances the length noise rises proportionally. The measurements were performed under conditions typical for metrology SPM systems

Keywords

  • Nanometrology
  • interferometry
  • refractive index of air
access type Open Access

Novel Method for Sizing Metallic Bottom Crack Depth Using Multi-frequency Alternating Current Potential Drop Technique

Published Online: 29 Oct 2015
Page range: 268 - 268

Abstract

Abstract

Potential drop techniques are of two types: the direct current potential drop (DCPD) technique and alternating current potential drop (ACPD) technique, and both of them are used in nondestructive testing. ACPD, as a kind of valid method in sizing metal cracks, has been applied to evaluate metal structures. However, our review of most available approaches revealed that some improvements can be done in measuring depth of metal bottom crack by means of ACPD, such as accuracy and sensitivity of shallow crack. This paper studied a novel method which utilized the slope of voltage ratio-frequency curve to solve bottom crack depth by using a simple mathematic equation based on finite element analysis. It is found that voltage ratio varies linearly with frequency in the range of 5-15 Hz; this range is slightly higher than the equivalent frequency and lower than semi-permeable frequency. Simulation and experiment show that the novel method can measure the bottom crack depth accurately.

Keywords

  • Nondestructive testing
  • alternating current potential drop technique
  • bottom crack
  • depth measurement

Plan your remote conference with Sciendo