Published Online: 21 Feb 2017 Page range: 167 - 172
Abstract
Summary
In this article, we mainly formalize in Mizar [2] the equivalence among a few compactness definitions of metric spaces, norm spaces, and the real line. In the first section, we formalized general topological properties of metric spaces. We discussed openness and closedness of subsets in metric spaces in terms of convergence of element sequences. In the second section, we firstly formalize the definition of sequentially compact, and then discuss the equivalence of compactness, countable compactness, sequential compactness, and totally boundedness with completeness in metric spaces.
In the third section, we discuss compactness in norm spaces. We formalize the equivalence of compactness and sequential compactness in norm space. In the fourth section, we formalize topological properties of the real line in terms of convergence of real number sequences. In the last section, we formalize the equivalence of compactness and sequential compactness in the real line. These formalizations are based on [20], [5], [17], [14], and [4].
Published Online: 21 Feb 2017 Page range: 173 - 186
Abstract
Abstract
First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on ℕ (F1) with the Fréchet filter on ℕ × ℕ (F2), we compare limF₁ and limF₂ for all double sequences in a non empty topological space.
Endou, Okazaki and Shidama formalized in [14] the “convergence in Pringsheim’s sense” for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter convergence in a topological space. Then we formalize that the double sequence converges in “Pringsheim’s sense” but not in Frechet filter on ℕ × ℕ sense.
In the next section, we generalize some definitions: “is convergent in the first coordinate”, “is convergent in the second coordinate”, “the lim in the first coordinate of”, “the lim in the second coordinate of” according to [14], in Hausdorff space.
Finally, we generalize two theorems: (3) and (4) from [14] in the case of double sequences and we formalize the “iterated limit” theorem (“Double limit” [7], p. 81, par. 8.5 “Double limite” [6] (TG I,57)), all in regular space. We were inspired by the exercises (2.11.4), (2.17.5) [17] and the corrections B.10 [18].
Published Online: 21 Feb 2017 Page range: 187 - 198
Abstract
Abstract
Representation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [4], [3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases).
Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization, which could serve in further development of Mizar projects [2]. This could be regarded as one of the important benefits of proof formalization [9].
Published Online: 21 Feb 2017 Page range: 199 - 204
Abstract
Abstract
In this article, the definitions and basic properties of Riemann-Stieltjes integral are formalized in Mizar [1]. In the first section, we showed the preliminary definition. We proved also some properties of finite sequences of real numbers. In Sec. 2, we defined variation. Using the definition, we also defined bounded variation and total variation, and proved theorems about related properties.
In Sec. 3, we defined Riemann-Stieltjes integral. Referring to the way of the article [7], we described the definitions. In the last section, we proved theorems about linearity of Riemann-Stieltjes integral. Because there are two types of linearity in Riemann-Stieltjes integral, we proved linearity in two ways. We showed the proof of theorems based on the description of the article [7]. These formalizations are based on [8], [5], [3], and [4].
Published Online: 21 Feb 2017 Page range: 205 - 214
Abstract
Abstract
In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space.
We define the topology induced by a quasi-uniform space. Finally we formalize from the sets of the form ((X \ Ω) × X) ∪ (X × Ω), the Csaszar-Pervin quasi-uniform space induced by a topological space.
Published Online: 21 Feb 2017 Page range: 215 - 226
Abstract
Abstract
In this article, we formalize in Mizar [1] the notion of uniform space introduced by André Weil using the concepts of entourages [2].
We present some results between uniform space and pseudo metric space. We introduce the concepts of left-uniformity and right-uniformity of a topological group.
Next, we define the concept of the partition topology. Following the Vlach’s works [11, 10], we define the semi-uniform space induced by a tolerance and the uniform space induced by an equivalence relation.
Finally, using mostly Gehrke, Grigorieff and Pin [4] works, a Pervin uniform space defined from the sets of the form ((X\A) × (X\A)) ∪ (A×A) is presented.
Published Online: 21 Feb 2017 Page range: 227 - 237
Abstract
Abstract
In this article we extend the algebraic theory of polynomial rings, formalized in Mizar [1], based on [2], [3]. After introducing constant and monic polynomials we present the canonical embedding of R into R[X] and deal with both unit and irreducible elements. We also define polynomial GCDs and show that for fields F and irreducible polynomials p the field F[X]/<p> is isomorphic to the field of polynomials with degree smaller than the one of p.
In this article, we mainly formalize in Mizar [2] the equivalence among a few compactness definitions of metric spaces, norm spaces, and the real line. In the first section, we formalized general topological properties of metric spaces. We discussed openness and closedness of subsets in metric spaces in terms of convergence of element sequences. In the second section, we firstly formalize the definition of sequentially compact, and then discuss the equivalence of compactness, countable compactness, sequential compactness, and totally boundedness with completeness in metric spaces.
In the third section, we discuss compactness in norm spaces. We formalize the equivalence of compactness and sequential compactness in norm space. In the fourth section, we formalize topological properties of the real line in terms of convergence of real number sequences. In the last section, we formalize the equivalence of compactness and sequential compactness in the real line. These formalizations are based on [20], [5], [17], [14], and [4].
First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on ℕ (F1) with the Fréchet filter on ℕ × ℕ (F2), we compare limF₁ and limF₂ for all double sequences in a non empty topological space.
Endou, Okazaki and Shidama formalized in [14] the “convergence in Pringsheim’s sense” for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter convergence in a topological space. Then we formalize that the double sequence converges in “Pringsheim’s sense” but not in Frechet filter on ℕ × ℕ sense.
In the next section, we generalize some definitions: “is convergent in the first coordinate”, “is convergent in the second coordinate”, “the lim in the first coordinate of”, “the lim in the second coordinate of” according to [14], in Hausdorff space.
Finally, we generalize two theorems: (3) and (4) from [14] in the case of double sequences and we formalize the “iterated limit” theorem (“Double limit” [7], p. 81, par. 8.5 “Double limite” [6] (TG I,57)), all in regular space. We were inspired by the exercises (2.11.4), (2.17.5) [17] and the corrections B.10 [18].
Representation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [4], [3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases).
Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization, which could serve in further development of Mizar projects [2]. This could be regarded as one of the important benefits of proof formalization [9].
In this article, the definitions and basic properties of Riemann-Stieltjes integral are formalized in Mizar [1]. In the first section, we showed the preliminary definition. We proved also some properties of finite sequences of real numbers. In Sec. 2, we defined variation. Using the definition, we also defined bounded variation and total variation, and proved theorems about related properties.
In Sec. 3, we defined Riemann-Stieltjes integral. Referring to the way of the article [7], we described the definitions. In the last section, we proved theorems about linearity of Riemann-Stieltjes integral. Because there are two types of linearity in Riemann-Stieltjes integral, we proved linearity in two ways. We showed the proof of theorems based on the description of the article [7]. These formalizations are based on [8], [5], [3], and [4].
In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space.
We define the topology induced by a quasi-uniform space. Finally we formalize from the sets of the form ((X \ Ω) × X) ∪ (X × Ω), the Csaszar-Pervin quasi-uniform space induced by a topological space.
In this article, we formalize in Mizar [1] the notion of uniform space introduced by André Weil using the concepts of entourages [2].
We present some results between uniform space and pseudo metric space. We introduce the concepts of left-uniformity and right-uniformity of a topological group.
Next, we define the concept of the partition topology. Following the Vlach’s works [11, 10], we define the semi-uniform space induced by a tolerance and the uniform space induced by an equivalence relation.
Finally, using mostly Gehrke, Grigorieff and Pin [4] works, a Pervin uniform space defined from the sets of the form ((X\A) × (X\A)) ∪ (A×A) is presented.
In this article we extend the algebraic theory of polynomial rings, formalized in Mizar [1], based on [2], [3]. After introducing constant and monic polynomials we present the canonical embedding of R into R[X] and deal with both unit and irreducible elements. We also define polynomial GCDs and show that for fields F and irreducible polynomials p the field F[X]/<p> is isomorphic to the field of polynomials with degree smaller than the one of p.