Journal & Issues

Volume 30 (2022): Issue 4 (December 2022)

Volume 30 (2022): Issue 3 (October 2022)

Volume 30 (2022): Issue 2 (July 2022)

Volume 30 (2022): Issue 1 (April 2022)

Volume 29 (2021): Issue 4 (December 2021)

Volume 29 (2021): Issue 3 (October 2021)

Volume 29 (2021): Issue 2 (July 2021)

Volume 29 (2021): Issue 1 (April 2021)

Volume 28 (2020): Issue 4 (December 2020)

Volume 28 (2020): Issue 3 (October 2020)

Volume 28 (2020): Issue 2 (July 2020)

Volume 28 (2020): Issue 1 (April 2020)

Volume 27 (2019): Issue 4 (December 2019)

Volume 27 (2019): Issue 3 (October 2019)

Volume 27 (2019): Issue 2 (July 2019)

Volume 27 (2019): Issue 1 (April 2019)

Volume 26 (2018): Issue 4 (December 2018)

Volume 26 (2018): Issue 3 (October 2018)

Volume 26 (2018): Issue 2 (July 2018)

Volume 26 (2018): Issue 1 (April 2018)

Volume 25 (2017): Issue 4 (December 2017)

Volume 25 (2017): Issue 3 (October 2017)

Volume 25 (2017): Issue 2 (July 2017)

Volume 25 (2017): Issue 1 (March 2017)

Volume 24 (2016): Issue 4 (December 2016)

Volume 24 (2016): Issue 3 (September 2016)

Volume 24 (2016): Issue 2 (June 2016)

Volume 24 (2016): Issue 1 (March 2016)

Volume 23 (2015): Issue 4 (December 2015)

Volume 23 (2015): Issue 3 (September 2015)

Volume 23 (2015): Issue 2 (June 2015)

Volume 23 (2015): Issue 1 (March 2015)

Volume 22 (2014): Issue 4 (December 2014)

Volume 22 (2014): Issue 3 (September 2014)

Volume 22 (2014): Issue 2 (June 2014)
Special Issue: 25 years of the Mizar Mathematical Library

Volume 22 (2014): Issue 1 (March 2014)

Volume 21 (2013): Issue 4 (December 2013)

Volume 21 (2013): Issue 3 (October 2013)

Volume 21 (2013): Issue 2 (June 2013)

Volume 21 (2013): Issue 1 (January 2013)

Volume 20 (2012): Issue 4 (December 2012)

Volume 20 (2012): Issue 3 (September 2012)

Volume 20 (2012): Issue 2 (June 2012)

Volume 20 (2012): Issue 1 (January 2012)

Volume 19 (2011): Issue 4 (December 2011)

Volume 19 (2011): Issue 3 (September 2011)

Volume 19 (2011): Issue 2 (June 2011)

Volume 19 (2011): Issue 1 (March 2011)

Volume 18 (2010): Issue 4 (December 2010)

Volume 18 (2010): Issue 3 (September 2010)

Volume 18 (2010): Issue 2 (June 2010)

Volume 18 (2010): Issue 1 (March 2010)

Volume 17 (2009): Issue 4 (December 2009)

Volume 17 (2009): Issue 3 (September 2009)

Volume 17 (2009): Issue 2 (June 2009)

Volume 17 (2009): Issue 1 (March 2009)

Volume 16 (2008): Issue 4 (December 2008)

Volume 16 (2008): Issue 3 (September 2008)

Volume 16 (2008): Issue 2 (June 2008)

Volume 16 (2008): Issue 1 (March 2008)

Volume 15 (2007): Issue 4 (December 2007)

Volume 15 (2007): Issue 3 (September 2007)

Volume 15 (2007): Issue 2 (June 2007)

Volume 15 (2007): Issue 1 (March 2007)

Volume 14 (2006): Issue 4 (December 2006)

Volume 14 (2006): Issue 3 (September 2006)

Volume 14 (2006): Issue 2 (June 2006)

Volume 14 (2006): Issue 1 (March 2006)

Journal Details
Format
Journal
eISSN
1898-9934
ISSN
1426-2630
First Published
09 Jun 2008
Publication timeframe
4 times per year
Languages
English

Search

Volume 20 (2012): Issue 2 (June 2012)

Journal Details
Format
Journal
eISSN
1898-9934
ISSN
1426-2630
First Published
09 Jun 2008
Publication timeframe
4 times per year
Languages
English

Search

9 Articles
Open Access

Fundamental Group of n-sphere for n ≥ 2

Published Online: 02 Feb 2013
Page range: 97 - 104

Abstract

Summary

Triviality of fundamental groups of spheres of dimension greater than 1 is proven, [17]

Open Access

The Borsuk-Ulam Theorem

Published Online: 02 Feb 2013
Page range: 105 - 112

Abstract

Summary

The Borsuk-Ulam theorem about antipodals is proven, [18, pp. 32-33].

Open Access

Higher-Order Partial Differentiation

Published Online: 02 Feb 2013
Page range: 113 - 124

Abstract

Summary

In this article, we shall extend the formalization of [10] to discuss higher-order partial differentiation of real valued functions. The linearity of this operator is also proved (refer to [10], [12] and [13] for partial differentiation).

Open Access

Formalization of the Data Encryption Standard

Published Online: 02 Feb 2013
Page range: 125 - 146

Abstract

Summary

In this article we formalize DES (the Data Encryption Standard), that was the most widely used symmetric cryptosystem in the world. DES is a block cipher which was selected by the National Bureau of Standards as an official Federal Information Processing Standard for the United States in 1976 [15].

Open Access

Semantics of MML Query

Published Online: 02 Feb 2013
Page range: 147 - 155

Abstract

Summary

In the paper the semantics of MML Query queries is given. The formalization is done according to [4]

Open Access

Routh’s, Menelaus’ and Generalized Ceva’s Theorems

Published Online: 02 Feb 2013
Page range: 157 - 159

Abstract

Summary

The goal of this article is to formalize Ceva’s theorem that is in the [8] on the web. Alongside with it formalizations of Routh’s, Menelaus’ and generalized form of Ceva’s theorem itself are provided.

Open Access

Simple Graphs as Simplicial Complexes: the Mycielskian of a Graph

Published Online: 02 Feb 2013
Page range: 161 - 174

Abstract

Summary

Harary [10, p. 7] claims that Veblen [20, p. 2] first suggested to formalize simple graphs using simplicial complexes. We have developed basic terminology for simple graphs as at most 1-dimensional complexes.

We formalize this new setting and then reprove Mycielski’s [12] construction resulting in a triangle-free graph with arbitrarily large chromatic number. A different formalization of similar material is in [15].

Open Access

Extended Euclidean Algorithm and CRT Algorithm

Published Online: 02 Feb 2013
Page range: 175 - 179

Abstract

Summary

In this article we formalize some number theoretical algorithms, Euclidean Algorithm and Extended Euclidean Algorithm [9]. Besides the a gcd b, Extended Euclidean Algorithm can calculate a pair of two integers (x, y) that holds ax + by = a gcd b. In addition, we formalize an algorithm that can compute a solution of the Chinese remainder theorem by using Extended Euclidean Algorithm. Our aim is to support the implementation of number theoretic tools. Our formalization of those algorithms is based on the source code of the NZMATH, a number theory oriented calculation system developed by Tokyo Metropolitan University [8].

Open Access

Introduction to Rational Functions

Published Online: 02 Feb 2013
Page range: 181 - 191

Abstract

Summary

In this article we formalize rational functions as pairs of polynomials and define some basic notions including the degree and evaluation of rational functions [8]. The main goal of the article is to provide properties of rational functions necessary to prove a theorem on the stability of networks

9 Articles
Open Access

Fundamental Group of n-sphere for n ≥ 2

Published Online: 02 Feb 2013
Page range: 97 - 104

Abstract

Summary

Triviality of fundamental groups of spheres of dimension greater than 1 is proven, [17]

Open Access

The Borsuk-Ulam Theorem

Published Online: 02 Feb 2013
Page range: 105 - 112

Abstract

Summary

The Borsuk-Ulam theorem about antipodals is proven, [18, pp. 32-33].

Open Access

Higher-Order Partial Differentiation

Published Online: 02 Feb 2013
Page range: 113 - 124

Abstract

Summary

In this article, we shall extend the formalization of [10] to discuss higher-order partial differentiation of real valued functions. The linearity of this operator is also proved (refer to [10], [12] and [13] for partial differentiation).

Open Access

Formalization of the Data Encryption Standard

Published Online: 02 Feb 2013
Page range: 125 - 146

Abstract

Summary

In this article we formalize DES (the Data Encryption Standard), that was the most widely used symmetric cryptosystem in the world. DES is a block cipher which was selected by the National Bureau of Standards as an official Federal Information Processing Standard for the United States in 1976 [15].

Open Access

Semantics of MML Query

Published Online: 02 Feb 2013
Page range: 147 - 155

Abstract

Summary

In the paper the semantics of MML Query queries is given. The formalization is done according to [4]

Open Access

Routh’s, Menelaus’ and Generalized Ceva’s Theorems

Published Online: 02 Feb 2013
Page range: 157 - 159

Abstract

Summary

The goal of this article is to formalize Ceva’s theorem that is in the [8] on the web. Alongside with it formalizations of Routh’s, Menelaus’ and generalized form of Ceva’s theorem itself are provided.

Open Access

Simple Graphs as Simplicial Complexes: the Mycielskian of a Graph

Published Online: 02 Feb 2013
Page range: 161 - 174

Abstract

Summary

Harary [10, p. 7] claims that Veblen [20, p. 2] first suggested to formalize simple graphs using simplicial complexes. We have developed basic terminology for simple graphs as at most 1-dimensional complexes.

We formalize this new setting and then reprove Mycielski’s [12] construction resulting in a triangle-free graph with arbitrarily large chromatic number. A different formalization of similar material is in [15].

Open Access

Extended Euclidean Algorithm and CRT Algorithm

Published Online: 02 Feb 2013
Page range: 175 - 179

Abstract

Summary

In this article we formalize some number theoretical algorithms, Euclidean Algorithm and Extended Euclidean Algorithm [9]. Besides the a gcd b, Extended Euclidean Algorithm can calculate a pair of two integers (x, y) that holds ax + by = a gcd b. In addition, we formalize an algorithm that can compute a solution of the Chinese remainder theorem by using Extended Euclidean Algorithm. Our aim is to support the implementation of number theoretic tools. Our formalization of those algorithms is based on the source code of the NZMATH, a number theory oriented calculation system developed by Tokyo Metropolitan University [8].

Open Access

Introduction to Rational Functions

Published Online: 02 Feb 2013
Page range: 181 - 191

Abstract

Summary

In this article we formalize rational functions as pairs of polynomials and define some basic notions including the degree and evaluation of rational functions [8]. The main goal of the article is to provide properties of rational functions necessary to prove a theorem on the stability of networks