Published Online: 20 Mar 2009 Page range: 231 - 245
Abstract
Model Checking. Part II
This article provides the definition of linear temporal logic (LTL) and its properties relevant to model checking based on [9]. Mizar formalization of LTL language and satisfiability is based on [2, 3].
Published Online: 20 Mar 2009 Page range: 247 - 252
Abstract
Modular Integer Arithmetic
In this article we show the correctness of integer arithmetic based on Chinese Remainder theorem as described e.g. in [11]: Integers are transformed to finite sequences of modular integers, on which the arithmetic operations are performed. Retransformation of the results to the integers is then accomplished by means of the Chinese Remainder theorem. The method presented is a typical example for computing in homomorphic images.
Published Online: 20 Mar 2009 Page range: 253 - 258
Abstract
General Theory of Quasi-Commutative BCI-algebras
It is known that commutative BCK-algebras form a variety, but BCK-algebras do not [4]. Therefore H. Yutani introduced the notion of quasicommutative BCK-algebras. In this article we first present the notion and general theory of quasi-commutative BCI-algebras. Then we discuss the reduction of the type of quasi-commutative BCK-algebras and some special classes of quasicommutative BCI-algebras.
Published Online: 20 Mar 2009 Page range: 259 - 267
Abstract
Block Diagonal Matrices
In this paper I present basic properties of block diagonal matrices over a set. In my approach the finite sequence of matrices in a block diagonal matrix is not restricted to square matrices. Moreover, the off-diagonal blocks need not be zero matrices, but also with another arbitrary fixed value.
Published Online: 20 Mar 2009 Page range: 269 - 275
Abstract
Linear Map of Matrices
The paper is concerned with a generalization of concepts introduced in [13], i.e. introduced are matrices of linear transformations over a finitedimensional vector space. Introduced are linear transformations over a finitedimensional vector space depending on a given matrix of the transformation. Finally, I prove that the rank of linear transformations over a finite-dimensional vector space is the same as the rank of the matrix of that transformation.
Published Online: 20 Mar 2009 Page range: 277 - 282
Abstract
Orthomodular Lattices
The main result of the article is the solution to the problem of short axiomatizations of orthomodular ortholattices. Based on EQP/Otter results [10], we gave a set of three equations which is equivalent to the classical, much longer equational basis of such a class. Also the basic example of the lattice which is not orthomodular, i.e. benzene (or B6) is defined in two settings - as a relational structure (poset) and as a lattice.
As a preliminary work, we present the proofs of the dependence of other axiomatizations of ortholattices. The formalization of the properties of orthomodular lattices follows [4].
Published Online: 20 Mar 2009 Page range: 283 - 288
Abstract
Basic Properties and Concept of Selected Subsequence of Zero Based Finite Sequences
Here, we develop the theory of zero based finite sequences, which are sometimes, more useful in applications than normal one based finite sequences. The fundamental function Sgm is introduced as well as in case of normal finite sequences and other notions are also introduced. However, many theorems are a modification of old theorems of normal finite sequences, they are basically important and are necessary for applications. A new concept of selected subsequence is introduced. This concept came from the individual Ergodic theorem (see [7]) and it is the preparation for its proof.
This article provides the definition of linear temporal logic (LTL) and its properties relevant to model checking based on [9]. Mizar formalization of LTL language and satisfiability is based on [2, 3].
In this article we show the correctness of integer arithmetic based on Chinese Remainder theorem as described e.g. in [11]: Integers are transformed to finite sequences of modular integers, on which the arithmetic operations are performed. Retransformation of the results to the integers is then accomplished by means of the Chinese Remainder theorem. The method presented is a typical example for computing in homomorphic images.
It is known that commutative BCK-algebras form a variety, but BCK-algebras do not [4]. Therefore H. Yutani introduced the notion of quasicommutative BCK-algebras. In this article we first present the notion and general theory of quasi-commutative BCI-algebras. Then we discuss the reduction of the type of quasi-commutative BCK-algebras and some special classes of quasicommutative BCI-algebras.
In this paper I present basic properties of block diagonal matrices over a set. In my approach the finite sequence of matrices in a block diagonal matrix is not restricted to square matrices. Moreover, the off-diagonal blocks need not be zero matrices, but also with another arbitrary fixed value.
The paper is concerned with a generalization of concepts introduced in [13], i.e. introduced are matrices of linear transformations over a finitedimensional vector space. Introduced are linear transformations over a finitedimensional vector space depending on a given matrix of the transformation. Finally, I prove that the rank of linear transformations over a finite-dimensional vector space is the same as the rank of the matrix of that transformation.
The main result of the article is the solution to the problem of short axiomatizations of orthomodular ortholattices. Based on EQP/Otter results [10], we gave a set of three equations which is equivalent to the classical, much longer equational basis of such a class. Also the basic example of the lattice which is not orthomodular, i.e. benzene (or B6) is defined in two settings - as a relational structure (poset) and as a lattice.
As a preliminary work, we present the proofs of the dependence of other axiomatizations of ortholattices. The formalization of the properties of orthomodular lattices follows [4].
Basic Properties and Concept of Selected Subsequence of Zero Based Finite Sequences
Here, we develop the theory of zero based finite sequences, which are sometimes, more useful in applications than normal one based finite sequences. The fundamental function Sgm is introduced as well as in case of normal finite sequences and other notions are also introduced. However, many theorems are a modification of old theorems of normal finite sequences, they are basically important and are necessary for applications. A new concept of selected subsequence is introduced. This concept came from the individual Ergodic theorem (see [7]) and it is the preparation for its proof.