Published Online: 26 Apr 2012 Page range: 127 - 130
Abstract
Mazur-Ulam Theorem
The Mazur-Ulam theorem [15] has been formulated as two registrations: cluster bijective isometric -> midpoints-preserving Function of E, F; and cluster isometric midpoints-preserving -> Affine Function of E, F; A proof given by Jussi Väisälä [23] has been formalized.
Published Online: 26 Apr 2012 Page range: 131 - 138
Abstract
Set of Points on Elliptic Curve in Projective Coordinates
In this article, we formalize a set of points on an elliptic curve over GF(p). Elliptic curve cryptography [10], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security.
Published Online: 26 Apr 2012 Page range: 139 - 144
Abstract
Continuity of Barycentric Coordinates in Euclidean Topological Spaces
In this paper we present selected properties of barycentric coordinates in the Euclidean topological space. We prove the topological correspondence between a subset of an affine closed space of εn and the set of vectors created from barycentric coordinates of points of this subset.
Published Online: 26 Apr 2012 Page range: 145 - 150
Abstract
Brouwer Fixed Point Theorem for Simplexes
In this article we prove the Brouwer fixed point theorem for an arbitrary simplex which is the convex hull of its n + 1 affinely indepedent vertices of εn. First we introduce the Lebesgue number, which for an arbitrary open cover of a compact metric space M is a positive real number so that any ball of about such radius must be completely contained in a member of the cover. Then we introduce the notion of a bounded simplicial complex and the diameter of a bounded simplicial complex. We also prove the estimation of diameter decrease which is connected with the barycentric subdivision. Finally, we prove the Brouwer fixed point theorem and compute the small inductive dimension of εn. This article is based on [16].
Published Online: 26 Apr 2012 Page range: 151 - 153
Abstract
Brouwer Fixed Point Theorem in the General Case
In this article we prove the Brouwer fixed point theorem for an arbitrary convex compact subset of εn with a non empty interior. This article is based on [15].
Published Online: 26 Apr 2012 Page range: 155 - 167
Abstract
Preliminaries to Classical First Order Model Theory
First of a series of articles laying down the bases for classical first order model theory. These articles introduce a framework for treating arbitrary languages with equality. This framework is kept as generic and modular as possible: both the language and the derivation rule are introduced as a type, rather than a fixed functor; definitions and results regarding syntax, semantics, interpretations and sequent derivation rules, respectively, are confined to separate articles, to mark out the hierarchy of dependences among different definitions and constructions.
As an application limited to countable languages, satisfiability theorem and a full version of the Gödel completeness theorem are delivered, with respect to a fixed, remarkably thrifty, set of correct rules. Besides the self-referential significance for the Mizar project itself of those theorems being formalized with respect to a generic, equality-furnished, countable language, this is the first step to work out other milestones of model theory, such as Lowenheim-Skolem and compactness theorems. Being the receptacle of all results of broader scope stemmed during the various formalizations, this first article stays at a very generic level, with results and registrations about objects already in the Mizar Mathematical Library.
Without introducing the Language structure yet, three fundamental definitions of wide applicability are also given: the ‘unambiguous' attribute (see [20], definition on page 5), the functor ‘-multiCat’, which is the iteration of ‘^’ over a FinSequence of FinSequence, and the functor SubstWith, which realizes the substitution of a single symbol inside a generic FinSequence.
Published Online: 26 Apr 2012 Page range: 169 - 178
Abstract
Definition of First Order Language with Arbitrary Alphabet. Syntax of Terms, Atomic Formulas and their Subterms
Second of a series of articles laying down the bases for classical first order model theory. A language is defined basically as a tuple made of an integer-valued function (adicity), a symbol of equality and a symbol for the NOR logical connective. The only requests for this tuple to be a language is that the value of the adicity in = is -2 and that its preimage (i.e. the variables set) in 0 is infinite. Existential quantification will be rendered (see [11]) by mere prefixing a formula with a letter. Then the hierarchy among symbols according to their adicity is introduced, taking advantage of attributes and clusters.
The strings of symbols of a language are depth-recursively classified as terms using the standard approach (see for example [16], definition 1.1.2); technically, this is done here by deploying the ‘-multiCat' functor and the ‘unambiguous’ attribute previously introduced in [10], and the set of atomic formulas is introduced. The set of all terms is shown to be unambiguous with respect to concatenation; we say that it is a prefix set. This fact is exploited to uniquely define the subterms both of a term and of an atomic formula without resorting to a parse tree.
Published Online: 26 Apr 2012 Page range: 179 - 192
Abstract
First Order Languages: Further Syntax and Semantics
Third of a series of articles laying down the bases for classical first order model theory. Interpretation of a language in a universe set. Evaluation of a term in a universe. Truth evaluation of an atomic formula. Reassigning the value of a symbol in a given interpretation. Syntax and semantics of a non atomic formula are then defined concurrently (this point is explained in [16], 4.2.1). As a consequence, the evaluation of any w.f.f. string and the relation of logical implication are introduced. Depth of a formula. Definition of satisfaction and entailment (aka entailment or logical implication) relations, see [18] III.3.2 and III.4.1 respectively.
Published Online: 26 Apr 2012 Page range: 193 - 203
Abstract
Free Interpretation, Quotient Interpretation and Substitution of a Letter with a Term for First Order Languages
Fourth of a series of articles laying down the bases for classical first order model theory. This paper supplies a toolkit of constructions to work with languages and interpretations, and results relating them. The free interpretation of a language, having as a universe the set of terms of the language itself, is defined.
The quotient of an interpreteation with respect to an equivalence relation is built, and shown to remain an interpretation when the relation respects it. Both the concepts of quotient and of respecting relation are defined in broadest terms, with respect to objects as general as possible.
Along with the trivial symbol substitution generally defined in [11], the more complex substitution of a letter with a term is defined, basing right on the free interpretation just introduced, which is a novel approach, to the author's knowledge. A first important result shown is that the quotient operation commute in some sense with term evaluation and reassignment functors, both introduced in [13] (theorem 3, theorem 15). A second result proved is substitution lemma (theorem 10, corresponding to III.8.3 of [15]). This will be vital for proving satisfiability theorem and correctness of a certain sequent derivation rule in [14]. A third result supplied is that if two given languages coincide on the letters of a given FinSequence, their evaluation of it will also coincide. This too will be instrumental in [14] for proving correctness of another rule. Also, the Depth functor is shown to be invariant with respect to term substitution in a formula.
Fifth of a series of articles laying down the bases for classical first order model theory. This paper presents multiple themes: first it introduces sequents, rules and sets of rules for a first order language L as L-dependent types. Then defines derivability and provability according to a set of rules, and gives several technical lemmas binding all those concepts. Following that, it introduces a fixed set D of derivation rules, and proceeds to convert them to Mizar functorial cluster registrations to give the user a slick interface to apply them.
The remaining goals summon all the definitions and results introduced in this series of articles. First: D is shown to be correct and having the requisites to deliver a sensible definition of Henkin model (see [18]). Second: as a particular application of all the machinery built thus far, the satisfiability and Gödel completeness theorems are shown when restricting to countable languages. The techniques used to attain this are inspired from [18], then heavily modified with the twofold goal of embedding them into the more flexible framework of a variable ruleset here introduced, and of proving completeness of a set of rules more sparing than the one there used; in particular the simpler ruleset allowed to avoid the definition and tractation of free occurence of a literal, a fact which, along with shortening proofs, is remarkable in its own right. A preparatory account of some of the ideas used in the proofs given here can be found in [15].
The Mazur-Ulam theorem [15] has been formulated as two registrations: cluster bijective isometric -> midpoints-preserving Function of E, F; and cluster isometric midpoints-preserving -> Affine Function of E, F; A proof given by Jussi Väisälä [23] has been formalized.
Set of Points on Elliptic Curve in Projective Coordinates
In this article, we formalize a set of points on an elliptic curve over GF(p). Elliptic curve cryptography [10], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security.
Continuity of Barycentric Coordinates in Euclidean Topological Spaces
In this paper we present selected properties of barycentric coordinates in the Euclidean topological space. We prove the topological correspondence between a subset of an affine closed space of εn and the set of vectors created from barycentric coordinates of points of this subset.
In this article we prove the Brouwer fixed point theorem for an arbitrary simplex which is the convex hull of its n + 1 affinely indepedent vertices of εn. First we introduce the Lebesgue number, which for an arbitrary open cover of a compact metric space M is a positive real number so that any ball of about such radius must be completely contained in a member of the cover. Then we introduce the notion of a bounded simplicial complex and the diameter of a bounded simplicial complex. We also prove the estimation of diameter decrease which is connected with the barycentric subdivision. Finally, we prove the Brouwer fixed point theorem and compute the small inductive dimension of εn. This article is based on [16].
In this article we prove the Brouwer fixed point theorem for an arbitrary convex compact subset of εn with a non empty interior. This article is based on [15].
Preliminaries to Classical First Order Model Theory
First of a series of articles laying down the bases for classical first order model theory. These articles introduce a framework for treating arbitrary languages with equality. This framework is kept as generic and modular as possible: both the language and the derivation rule are introduced as a type, rather than a fixed functor; definitions and results regarding syntax, semantics, interpretations and sequent derivation rules, respectively, are confined to separate articles, to mark out the hierarchy of dependences among different definitions and constructions.
As an application limited to countable languages, satisfiability theorem and a full version of the Gödel completeness theorem are delivered, with respect to a fixed, remarkably thrifty, set of correct rules. Besides the self-referential significance for the Mizar project itself of those theorems being formalized with respect to a generic, equality-furnished, countable language, this is the first step to work out other milestones of model theory, such as Lowenheim-Skolem and compactness theorems. Being the receptacle of all results of broader scope stemmed during the various formalizations, this first article stays at a very generic level, with results and registrations about objects already in the Mizar Mathematical Library.
Without introducing the Language structure yet, three fundamental definitions of wide applicability are also given: the ‘unambiguous' attribute (see [20], definition on page 5), the functor ‘-multiCat’, which is the iteration of ‘^’ over a FinSequence of FinSequence, and the functor SubstWith, which realizes the substitution of a single symbol inside a generic FinSequence.
Definition of First Order Language with Arbitrary Alphabet. Syntax of Terms, Atomic Formulas and their Subterms
Second of a series of articles laying down the bases for classical first order model theory. A language is defined basically as a tuple made of an integer-valued function (adicity), a symbol of equality and a symbol for the NOR logical connective. The only requests for this tuple to be a language is that the value of the adicity in = is -2 and that its preimage (i.e. the variables set) in 0 is infinite. Existential quantification will be rendered (see [11]) by mere prefixing a formula with a letter. Then the hierarchy among symbols according to their adicity is introduced, taking advantage of attributes and clusters.
The strings of symbols of a language are depth-recursively classified as terms using the standard approach (see for example [16], definition 1.1.2); technically, this is done here by deploying the ‘-multiCat' functor and the ‘unambiguous’ attribute previously introduced in [10], and the set of atomic formulas is introduced. The set of all terms is shown to be unambiguous with respect to concatenation; we say that it is a prefix set. This fact is exploited to uniquely define the subterms both of a term and of an atomic formula without resorting to a parse tree.
First Order Languages: Further Syntax and Semantics
Third of a series of articles laying down the bases for classical first order model theory. Interpretation of a language in a universe set. Evaluation of a term in a universe. Truth evaluation of an atomic formula. Reassigning the value of a symbol in a given interpretation. Syntax and semantics of a non atomic formula are then defined concurrently (this point is explained in [16], 4.2.1). As a consequence, the evaluation of any w.f.f. string and the relation of logical implication are introduced. Depth of a formula. Definition of satisfaction and entailment (aka entailment or logical implication) relations, see [18] III.3.2 and III.4.1 respectively.
Free Interpretation, Quotient Interpretation and Substitution of a Letter with a Term for First Order Languages
Fourth of a series of articles laying down the bases for classical first order model theory. This paper supplies a toolkit of constructions to work with languages and interpretations, and results relating them. The free interpretation of a language, having as a universe the set of terms of the language itself, is defined.
The quotient of an interpreteation with respect to an equivalence relation is built, and shown to remain an interpretation when the relation respects it. Both the concepts of quotient and of respecting relation are defined in broadest terms, with respect to objects as general as possible.
Along with the trivial symbol substitution generally defined in [11], the more complex substitution of a letter with a term is defined, basing right on the free interpretation just introduced, which is a novel approach, to the author's knowledge. A first important result shown is that the quotient operation commute in some sense with term evaluation and reassignment functors, both introduced in [13] (theorem 3, theorem 15). A second result proved is substitution lemma (theorem 10, corresponding to III.8.3 of [15]). This will be vital for proving satisfiability theorem and correctness of a certain sequent derivation rule in [14]. A third result supplied is that if two given languages coincide on the letters of a given FinSequence, their evaluation of it will also coincide. This too will be instrumental in [14] for proving correctness of another rule. Also, the Depth functor is shown to be invariant with respect to term substitution in a formula.
Fifth of a series of articles laying down the bases for classical first order model theory. This paper presents multiple themes: first it introduces sequents, rules and sets of rules for a first order language L as L-dependent types. Then defines derivability and provability according to a set of rules, and gives several technical lemmas binding all those concepts. Following that, it introduces a fixed set D of derivation rules, and proceeds to convert them to Mizar functorial cluster registrations to give the user a slick interface to apply them.
The remaining goals summon all the definitions and results introduced in this series of articles. First: D is shown to be correct and having the requisites to deliver a sensible definition of Henkin model (see [18]). Second: as a particular application of all the machinery built thus far, the satisfiability and Gödel completeness theorems are shown when restricting to countable languages. The techniques used to attain this are inspired from [18], then heavily modified with the twofold goal of embedding them into the more flexible framework of a variable ruleset here introduced, and of proving completeness of a set of rules more sparing than the one there used; in particular the simpler ruleset allowed to avoid the definition and tractation of free occurence of a literal, a fact which, along with shortening proofs, is remarkable in its own right. A preparatory account of some of the ideas used in the proofs given here can be found in [15].