Partial Differentiation of Vector-Valued Functions on n-Dimensional Real Normed Linear Spaces
In this article, we define and develop partial differentiation of vector-valued functions on n-dimensional real normed linear spaces (refer to [19] and [20]).
Riemann Integral of Functions from R into Real Normed Space
In this article, we define the Riemann integral on functions from R into real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to a wider range of functions. The proof method follows the [16].
In [6] it was formalized that the direct product of a family of groups gives a new group. In this article, we formalize that for all j ∈ I, the group G = Πi∈IGi has a normal subgroup isomorphic to Gj. Moreover, we show some relations between a family of groups and its direct product.
Let ω(G) and χ(G) be the clique number and the chromatic number of a graph G. Mycielski [11] presented a construction that for any n creates a graph Mn which is triangle-free (ω(G) = 2) with χ(G) > n. The starting point is the complete graph of two vertices (K2). M(n+1) is obtained from Mn through the operation μ(G) called the Mycielskian of a graph G.
We first define the operation μ(G) and then show that ω(μ(G)) = ω(G) and χ(μ(G)) = χ(G) + 1. This is done for arbitrary graph G, see also [10]. Then we define the sequence of graphs Mn each of exponential size in n and give their clique and chromatic numbers.
In this article, we give some important theorems of forward difference, backward difference, central difference and difference quotient and forward difference, backward difference, central difference and difference quotient formulas of some special functions.
Cartesian Products of Family of Real Linear Spaces
In this article we introduced the isomorphism mapping between cartesian products of family of linear spaces [4]. Those products had been formalized by two different ways, i.e., the way using the functor [:X, Y:] and ones using the functor "product". By the same way, the isomorphism mapping was defined between Cartesian products of family of linear normed spaces also.
In this article, we formalize integral linear spaces, that is a linear space with integer coefficients. Integral linear spaces are necessary for lattice problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm that outputs short lattice base and cryptographic systems with lattice [8].
Partial Differentiation of Vector-Valued Functions on n-Dimensional Real Normed Linear Spaces
In this article, we define and develop partial differentiation of vector-valued functions on n-dimensional real normed linear spaces (refer to [19] and [20]).
Riemann Integral of Functions from R into Real Normed Space
In this article, we define the Riemann integral on functions from R into real normed space and prove the linearity of this operator. As a result, the Riemann integration can be applied to a wider range of functions. The proof method follows the [16].
In [6] it was formalized that the direct product of a family of groups gives a new group. In this article, we formalize that for all j ∈ I, the group G = Πi∈IGi has a normal subgroup isomorphic to Gj. Moreover, we show some relations between a family of groups and its direct product.
Let ω(G) and χ(G) be the clique number and the chromatic number of a graph G. Mycielski [11] presented a construction that for any n creates a graph Mn which is triangle-free (ω(G) = 2) with χ(G) > n. The starting point is the complete graph of two vertices (K2). M(n+1) is obtained from Mn through the operation μ(G) called the Mycielskian of a graph G.
We first define the operation μ(G) and then show that ω(μ(G)) = ω(G) and χ(μ(G)) = χ(G) + 1. This is done for arbitrary graph G, see also [10]. Then we define the sequence of graphs Mn each of exponential size in n and give their clique and chromatic numbers.
In this article, we give some important theorems of forward difference, backward difference, central difference and difference quotient and forward difference, backward difference, central difference and difference quotient formulas of some special functions.
Cartesian Products of Family of Real Linear Spaces
In this article we introduced the isomorphism mapping between cartesian products of family of linear spaces [4]. Those products had been formalized by two different ways, i.e., the way using the functor [:X, Y:] and ones using the functor "product". By the same way, the isomorphism mapping was defined between Cartesian products of family of linear normed spaces also.
In this article, we formalize integral linear spaces, that is a linear space with integer coefficients. Integral linear spaces are necessary for lattice problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm that outputs short lattice base and cryptographic systems with lattice [8].