Journal & Issues

Volume 30 (2022): Issue 4 (December 2022)

Volume 30 (2022): Issue 3 (October 2022)

Volume 30 (2022): Issue 2 (July 2022)

Volume 30 (2022): Issue 1 (April 2022)

Volume 29 (2021): Issue 4 (December 2021)

Volume 29 (2021): Issue 3 (October 2021)

Volume 29 (2021): Issue 2 (July 2021)

Volume 29 (2021): Issue 1 (April 2021)

Volume 28 (2020): Issue 4 (December 2020)

Volume 28 (2020): Issue 3 (October 2020)

Volume 28 (2020): Issue 2 (July 2020)

Volume 28 (2020): Issue 1 (April 2020)

Volume 27 (2019): Issue 4 (December 2019)

Volume 27 (2019): Issue 3 (October 2019)

Volume 27 (2019): Issue 2 (July 2019)

Volume 27 (2019): Issue 1 (April 2019)

Volume 26 (2018): Issue 4 (December 2018)

Volume 26 (2018): Issue 3 (October 2018)

Volume 26 (2018): Issue 2 (July 2018)

Volume 26 (2018): Issue 1 (April 2018)

Volume 25 (2017): Issue 4 (December 2017)

Volume 25 (2017): Issue 3 (October 2017)

Volume 25 (2017): Issue 2 (July 2017)

Volume 25 (2017): Issue 1 (March 2017)

Volume 24 (2016): Issue 4 (December 2016)

Volume 24 (2016): Issue 3 (September 2016)

Volume 24 (2016): Issue 2 (June 2016)

Volume 24 (2016): Issue 1 (March 2016)

Volume 23 (2015): Issue 4 (December 2015)

Volume 23 (2015): Issue 3 (September 2015)

Volume 23 (2015): Issue 2 (June 2015)

Volume 23 (2015): Issue 1 (March 2015)

Volume 22 (2014): Issue 4 (December 2014)

Volume 22 (2014): Issue 3 (September 2014)

Volume 22 (2014): Issue 2 (June 2014)
Special Issue: 25 years of the Mizar Mathematical Library

Volume 22 (2014): Issue 1 (March 2014)

Volume 21 (2013): Issue 4 (December 2013)

Volume 21 (2013): Issue 3 (October 2013)

Volume 21 (2013): Issue 2 (June 2013)

Volume 21 (2013): Issue 1 (January 2013)

Volume 20 (2012): Issue 4 (December 2012)

Volume 20 (2012): Issue 3 (September 2012)

Volume 20 (2012): Issue 2 (June 2012)

Volume 20 (2012): Issue 1 (January 2012)

Volume 19 (2011): Issue 4 (December 2011)

Volume 19 (2011): Issue 3 (September 2011)

Volume 19 (2011): Issue 2 (June 2011)

Volume 19 (2011): Issue 1 (March 2011)

Volume 18 (2010): Issue 4 (December 2010)

Volume 18 (2010): Issue 3 (September 2010)

Volume 18 (2010): Issue 2 (June 2010)

Volume 18 (2010): Issue 1 (March 2010)

Volume 17 (2009): Issue 4 (December 2009)

Volume 17 (2009): Issue 3 (September 2009)

Volume 17 (2009): Issue 2 (June 2009)

Volume 17 (2009): Issue 1 (March 2009)

Volume 16 (2008): Issue 4 (December 2008)

Volume 16 (2008): Issue 3 (September 2008)

Volume 16 (2008): Issue 2 (June 2008)

Volume 16 (2008): Issue 1 (March 2008)

Volume 15 (2007): Issue 4 (December 2007)

Volume 15 (2007): Issue 3 (September 2007)

Volume 15 (2007): Issue 2 (June 2007)

Volume 15 (2007): Issue 1 (March 2007)

Volume 14 (2006): Issue 4 (December 2006)

Volume 14 (2006): Issue 3 (September 2006)

Volume 14 (2006): Issue 2 (June 2006)

Volume 14 (2006): Issue 1 (March 2006)

Journal Details
Format
Journal
eISSN
1898-9934
First Published
09 Jun 2008
Publication timeframe
4 times per year
Languages
English

Search

Volume 29 (2021): Issue 2 (July 2021)

Journal Details
Format
Journal
eISSN
1898-9934
First Published
09 Jun 2008
Publication timeframe
4 times per year
Languages
English

Search

5 Articles

Artikel

Open Access

Pappus’s Hexagon Theorem in Real Projective Plane

Published Online: 30 Dec 2021
Page range: 69 - 76

Abstract

Summary. In this article we prove, using Mizar [2], [1], the Pappus’s hexagon theorem in the real projective plane: “Given one set of collinear points A, B, C, and another set of collinear points a, b, c, then the intersection points X, Y, Z of line pairs Ab and aB, Ac and aC, Bc and bC are collinear”

https://en.wikipedia.org/wiki/Pappus’s_hexagon_theorem

.

More precisely, we prove that the structure ProjectiveSpace TOP-REAL3 [10] (where TOP-REAL3 is a metric space defined in [5]) satisfies the Pappus’s axiom defined in [11] by Wojciech Leończuk and Krzysztof Prażmowski. Eugeniusz Kusak and Wojciech Leończuk formalized the Hessenberg theorem early in the MML [9]. With this result, the real projective plane is Desarguesian. For proving the Pappus’s theorem, two different proofs are given. First, we use the techniques developed in the section “Projective Proofs of Pappus’s Theorem” in the chapter “Pappos’s Theorem: Nine proofs and three variations” [12]. Secondly, Pascal’s theorem [4] is used.

In both cases, to prove some lemmas, we use Prover9

https://www.cs.unm.edu/~mccune/prover9/

, the successor of the Otter prover and ott2miz by Josef Urban

See its homepage https://github.com/JUrban/ott2miz

[13], [8], [7].

In Coq, the Pappus’s theorem is proved as the application of Grassmann-Cayley algebra [6] and more recently in Tarski’s geometry [3].

Keywords

  • Pappus’s Hexagon Theorem
  • real projective plan
  • Grassmann-Plücker relation
  • Prover9

MSC

  • 51N15
  • 03B35
  • 68V20
Open Access

On Weakly Associative Lattices and Near Lattices

Published Online: 30 Dec 2021
Page range: 77 - 85

Abstract

Summary. The main aim of this article is to introduce formally two generalizations of lattices, namely weakly associative lattices and near lattices, which can be obtained from the former by certain weakening of the usual well-known axioms. We show selected propositions devoted to weakly associative lattices and near lattices from Chapter 6 of [15], dealing also with alternative versions of classical axiomatizations. Some of the results were proven in the Mizar [1], [2] system with the help of Prover9 [14] proof assistant.

Keywords

  • weakly associative lattice
  • near lattice

MSC

  • 68V20
  • 06B05
  • 06B75
Open Access

Ascoli-Arzelà Theorem

Published Online: 30 Dec 2021
Page range: 87 - 94

Abstract

Summary. In this article we formalize the Ascoli-Arzelà theorem [5], [6], [8] in Mizar [1], [2]. First, we gave definitions of equicontinuousness and equiboundedness of a set of continuous functions [12], [7], [3], [9]. Next, we formalized the Ascoli-Arzelà theorem using those definitions, and proved this theorem.

Keywords

  • Ascoli-Arzela’s theorem
  • equicontinuousness of continuous functions
  • equiboundedness of continuous functions

MSC

  • 46B50
  • 68V20
Open Access

On Primary Ideals. Part I

Published Online: 30 Dec 2021
Page range: 95 - 101

Abstract

Summary. We formalize in the Mizar System [3], [4], definitions and basic propositions about primary ideals of a commutative ring along with Chapter 4 of [1] and Chapter III of [8]. Additionally other necessary basic ideal operations such as compatibilities taking radical and intersection of finite number of ideals are formalized as well in order to prove theorems relating primary ideals. These basic operations are mainly quoted from Chapter 1 of [1] and compiled as preliminaries in the first half of the article.

Keywords

  • primary ideal
  • radical ideal
  • prime ideal

MSC

  • 13A70
  • 16D70
  • 68V20
Open Access

Some Properties of Membership Functions Composed of Triangle Functions and Piecewise Linear Functions

Published Online: 30 Dec 2021
Page range: 103 - 115

Abstract

Summary. IF-THEN rules in fuzzy inference is composed of multiple fuzzy sets (membership functions). IF-THEN rules can therefore be considered as a pair of membership functions [7]. The evaluation function of fuzzy control is composite function with fuzzy approximate reasoning and is functional on the set of membership functions. We obtained continuity of the evaluation function and compactness of the set of membership functions [12]. Therefore, we proved the existence of pair of membership functions, which maximizes (minimizes) evaluation function and is considered IF-THEN rules, in the set of membership functions by using extreme value theorem. The set of membership functions (fuzzy sets) is defined in this article to verifier our proofs before by Mizar [9], [10], [4]. Membership functions composed of triangle function, piecewise linear function and Gaussian function used in practice are formalized using existing functions.

On the other hand, not only curve membership functions mentioned above but also membership functions composed of straight lines (piecewise linear function) like triangular and trapezoidal functions are formalized. Moreover, different from the definition in [3] formalizations of triangular and trapezoidal function composed of two straight lines, minimum function and maximum functions are proposed. We prove, using the Mizar [2], [1] formalism, some properties of membership functions such as continuity and periodicity [13], [8].

Keywords

  • membership function
  • piecewise linear function

MSC

  • 03E72
  • 68V20
5 Articles

Artikel

Open Access

Pappus’s Hexagon Theorem in Real Projective Plane

Published Online: 30 Dec 2021
Page range: 69 - 76

Abstract

Summary. In this article we prove, using Mizar [2], [1], the Pappus’s hexagon theorem in the real projective plane: “Given one set of collinear points A, B, C, and another set of collinear points a, b, c, then the intersection points X, Y, Z of line pairs Ab and aB, Ac and aC, Bc and bC are collinear”

https://en.wikipedia.org/wiki/Pappus’s_hexagon_theorem

.

More precisely, we prove that the structure ProjectiveSpace TOP-REAL3 [10] (where TOP-REAL3 is a metric space defined in [5]) satisfies the Pappus’s axiom defined in [11] by Wojciech Leończuk and Krzysztof Prażmowski. Eugeniusz Kusak and Wojciech Leończuk formalized the Hessenberg theorem early in the MML [9]. With this result, the real projective plane is Desarguesian. For proving the Pappus’s theorem, two different proofs are given. First, we use the techniques developed in the section “Projective Proofs of Pappus’s Theorem” in the chapter “Pappos’s Theorem: Nine proofs and three variations” [12]. Secondly, Pascal’s theorem [4] is used.

In both cases, to prove some lemmas, we use Prover9

https://www.cs.unm.edu/~mccune/prover9/

, the successor of the Otter prover and ott2miz by Josef Urban

See its homepage https://github.com/JUrban/ott2miz

[13], [8], [7].

In Coq, the Pappus’s theorem is proved as the application of Grassmann-Cayley algebra [6] and more recently in Tarski’s geometry [3].

Keywords

  • Pappus’s Hexagon Theorem
  • real projective plan
  • Grassmann-Plücker relation
  • Prover9

MSC

  • 51N15
  • 03B35
  • 68V20
Open Access

On Weakly Associative Lattices and Near Lattices

Published Online: 30 Dec 2021
Page range: 77 - 85

Abstract

Summary. The main aim of this article is to introduce formally two generalizations of lattices, namely weakly associative lattices and near lattices, which can be obtained from the former by certain weakening of the usual well-known axioms. We show selected propositions devoted to weakly associative lattices and near lattices from Chapter 6 of [15], dealing also with alternative versions of classical axiomatizations. Some of the results were proven in the Mizar [1], [2] system with the help of Prover9 [14] proof assistant.

Keywords

  • weakly associative lattice
  • near lattice

MSC

  • 68V20
  • 06B05
  • 06B75
Open Access

Ascoli-Arzelà Theorem

Published Online: 30 Dec 2021
Page range: 87 - 94

Abstract

Summary. In this article we formalize the Ascoli-Arzelà theorem [5], [6], [8] in Mizar [1], [2]. First, we gave definitions of equicontinuousness and equiboundedness of a set of continuous functions [12], [7], [3], [9]. Next, we formalized the Ascoli-Arzelà theorem using those definitions, and proved this theorem.

Keywords

  • Ascoli-Arzela’s theorem
  • equicontinuousness of continuous functions
  • equiboundedness of continuous functions

MSC

  • 46B50
  • 68V20
Open Access

On Primary Ideals. Part I

Published Online: 30 Dec 2021
Page range: 95 - 101

Abstract

Summary. We formalize in the Mizar System [3], [4], definitions and basic propositions about primary ideals of a commutative ring along with Chapter 4 of [1] and Chapter III of [8]. Additionally other necessary basic ideal operations such as compatibilities taking radical and intersection of finite number of ideals are formalized as well in order to prove theorems relating primary ideals. These basic operations are mainly quoted from Chapter 1 of [1] and compiled as preliminaries in the first half of the article.

Keywords

  • primary ideal
  • radical ideal
  • prime ideal

MSC

  • 13A70
  • 16D70
  • 68V20
Open Access

Some Properties of Membership Functions Composed of Triangle Functions and Piecewise Linear Functions

Published Online: 30 Dec 2021
Page range: 103 - 115

Abstract

Summary. IF-THEN rules in fuzzy inference is composed of multiple fuzzy sets (membership functions). IF-THEN rules can therefore be considered as a pair of membership functions [7]. The evaluation function of fuzzy control is composite function with fuzzy approximate reasoning and is functional on the set of membership functions. We obtained continuity of the evaluation function and compactness of the set of membership functions [12]. Therefore, we proved the existence of pair of membership functions, which maximizes (minimizes) evaluation function and is considered IF-THEN rules, in the set of membership functions by using extreme value theorem. The set of membership functions (fuzzy sets) is defined in this article to verifier our proofs before by Mizar [9], [10], [4]. Membership functions composed of triangle function, piecewise linear function and Gaussian function used in practice are formalized using existing functions.

On the other hand, not only curve membership functions mentioned above but also membership functions composed of straight lines (piecewise linear function) like triangular and trapezoidal functions are formalized. Moreover, different from the definition in [3] formalizations of triangular and trapezoidal function composed of two straight lines, minimum function and maximum functions are proposed. We prove, using the Mizar [2], [1] formalism, some properties of membership functions such as continuity and periodicity [13], [8].

Keywords

  • membership function
  • piecewise linear function

MSC

  • 03E72
  • 68V20