Zeitschriften und Ausgaben

Volumen 31 (2023): Heft 1 (September 2023)

Volumen 30 (2022): Heft 4 (December 2022)

Volumen 30 (2022): Heft 3 (October 2022)

Volumen 30 (2022): Heft 2 (July 2022)

Volumen 30 (2022): Heft 1 (April 2022)

Volumen 29 (2021): Heft 4 (December 2021)

Volumen 29 (2021): Heft 3 (September 2021)

Volumen 29 (2021): Heft 2 (July 2021)

Volumen 29 (2021): Heft 1 (April 2021)

Volumen 28 (2020): Heft 4 (December 2020)

Volumen 28 (2020): Heft 3 (October 2020)

Volumen 28 (2020): Heft 2 (July 2020)

Volumen 28 (2020): Heft 1 (April 2020)

Volumen 27 (2019): Heft 4 (December 2019)

Volumen 27 (2019): Heft 3 (October 2019)

Volumen 27 (2019): Heft 2 (July 2019)

Volumen 27 (2019): Heft 1 (April 2019)

Volumen 26 (2018): Heft 4 (December 2018)

Volumen 26 (2018): Heft 3 (October 2018)

Volumen 26 (2018): Heft 2 (July 2018)

Volumen 26 (2018): Heft 1 (April 2018)

Volumen 25 (2017): Heft 4 (December 2017)

Volumen 25 (2017): Heft 3 (October 2017)

Volumen 25 (2017): Heft 2 (July 2017)

Volumen 25 (2017): Heft 1 (March 2017)

Volumen 24 (2016): Heft 4 (December 2016)

Volumen 24 (2016): Heft 3 (September 2016)

Volumen 24 (2016): Heft 2 (June 2016)

Volumen 24 (2016): Heft 1 (March 2016)

Volumen 23 (2015): Heft 4 (December 2015)

Volumen 23 (2015): Heft 3 (September 2015)

Volumen 23 (2015): Heft 2 (June 2015)

Volumen 23 (2015): Heft 1 (March 2015)

Volumen 22 (2014): Heft 4 (December 2014)

Volumen 22 (2014): Heft 3 (September 2014)

Volumen 22 (2014): Heft 2 (June 2014)
Special Heft: 25 years of the Mizar Mathematical Library

Volumen 22 (2014): Heft 1 (March 2014)

Volumen 21 (2013): Heft 4 (December 2013)

Volumen 21 (2013): Heft 3 (October 2013)

Volumen 21 (2013): Heft 2 (June 2013)

Volumen 21 (2013): Heft 1 (January 2013)

Volumen 20 (2012): Heft 4 (December 2012)

Volumen 20 (2012): Heft 3 (December 2012)

Volumen 20 (2012): Heft 2 (December 2012)

Volumen 20 (2012): Heft 1 (January 2012)

Volumen 19 (2011): Heft 4 (January 2011)

Volumen 19 (2011): Heft 3 (January 2011)

Volumen 19 (2011): Heft 2 (January 2011)

Volumen 19 (2011): Heft 1 (January 2011)

Volumen 18 (2010): Heft 4 (January 2010)

Volumen 18 (2010): Heft 3 (January 2010)

Volumen 18 (2010): Heft 2 (January 2010)

Volumen 18 (2010): Heft 1 (January 2010)

Volumen 17 (2009): Heft 4 (January 2009)

Volumen 17 (2009): Heft 3 (January 2009)

Volumen 17 (2009): Heft 2 (January 2009)

Volumen 17 (2009): Heft 1 (January 2009)

Volumen 16 (2008): Heft 4 (January 2008)

Volumen 16 (2008): Heft 3 (January 2008)

Volumen 16 (2008): Heft 2 (January 2008)

Volumen 16 (2008): Heft 1 (January 2008)

Volumen 15 (2007): Heft 4 (January 2007)

Volumen 15 (2007): Heft 3 (January 2007)

Volumen 15 (2007): Heft 2 (January 2007)

Volumen 15 (2007): Heft 1 (January 2007)

Volumen 14 (2006): Heft 4 (January 2006)

Volumen 14 (2006): Heft 3 (January 2006)

Volumen 14 (2006): Heft 2 (January 2006)

Volumen 14 (2006): Heft 1 (January 2006)

Zeitschriftendaten
Format
Zeitschrift
eISSN
1898-9934
Erstveröffentlichung
09 Jun 2008
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Suche

Volumen 24 (2016): Heft 3 (September 2016)

Zeitschriftendaten
Format
Zeitschrift
eISSN
1898-9934
Erstveröffentlichung
09 Jun 2008
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Suche

0 Artikel
Uneingeschränkter Zugang

Compactness in Metric Spaces

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 167 - 172

Zusammenfassung

Schlüsselwörter

  • metric spaces
  • normed linear spaces
  • compactness

MSC

  • 46B50
  • 54E45
  • 03B35

MML

  • identifier: TOPMETR4
  • version: 8.1.05 5.37.1275
Uneingeschränkter Zugang

Double Sequences and Iterated Limits in Regular Space

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 173 - 186

Zusammenfassung

Abstract

First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on ℕ (F1) with the Fréchet filter on ℕ × ℕ (F2), we compare limF₁ and limF₂ for all double sequences in a non empty topological space.

Endou, Okazaki and Shidama formalized in [14] the “convergence in Pringsheim’s sense” for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter convergence in a topological space. Then we formalize that the double sequence converges in “Pringsheim’s sense” but not in Frechet filter on ℕ × ℕ sense.

In the next section, we generalize some definitions: “is convergent in the first coordinate”, “is convergent in the second coordinate”, “the lim in the first coordinate of”, “the lim in the second coordinate of” according to [14], in Hausdorff space.

Finally, we generalize two theorems: (3) and (4) from [14] in the case of double sequences and we formalize the “iterated limit” theorem (“Double limit” [7], p. 81, par. 8.5 “Double limite” [6] (TG I,57)), all in regular space. We were inspired by the exercises (2.11.4), (2.17.5) [17] and the corrections B.10 [18].

Schlüsselwörter

  • filter
  • double limits
  • Pringsheim convergence
  • iterated limits
  • regular space

MSC

  • 54A20
  • 40A05
  • 40B05
  • 03B35

MML

  • identifier: CARDFIL4
  • version: 8.1.05 5.37.1275
Uneingeschränkter Zugang

Prime Factorization of Sums and Differences of Two Like Powers

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 187 - 198

Zusammenfassung

Abstract

Representation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [4], [3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases).

Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization, which could serve in further development of Mizar projects [2]. This could be regarded as one of the important benefits of proof formalization [9].

Schlüsselwörter

  • integers
  • factorization
  • primes

MSC

  • 11A51
  • 03B35

MML

  • identifier: NEWTON03
  • version: 8.1.05 5.37.1275
Uneingeschränkter Zugang

Riemann-Stieltjes Integral

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 199 - 204

Zusammenfassung

Abstract

In this article, the definitions and basic properties of Riemann-Stieltjes integral are formalized in Mizar [1]. In the first section, we showed the preliminary definition. We proved also some properties of finite sequences of real numbers. In Sec. 2, we defined variation. Using the definition, we also defined bounded variation and total variation, and proved theorems about related properties.

In Sec. 3, we defined Riemann-Stieltjes integral. Referring to the way of the article [7], we described the definitions. In the last section, we proved theorems about linearity of Riemann-Stieltjes integral. Because there are two types of linearity in Riemann-Stieltjes integral, we proved linearity in two ways. We showed the proof of theorems based on the description of the article [7]. These formalizations are based on [8], [5], [3], and [4].

Schlüsselwörter

  • Riemann-Stieltjes integral
  • bounded variation
  • linearity

MSC

  • 26A42
  • 26A45
  • 03B35

MML

  • identifier: INTEGR22
  • version: 8.1.05 5.37.1275
Uneingeschränkter Zugang

Quasi-uniform Space

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 205 - 214

Zusammenfassung

Abstract

In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space.

We define the topology induced by a quasi-uniform space. Finally we formalize from the sets of the form ((X \ Ω) × X) ∪ (X × Ω), the Csaszar-Pervin quasi-uniform space induced by a topological space.

Schlüsselwörter

  • quasi-uniform space
  • quasi-uniformity
  • Pervin space
  • Csaszar-Pervin quasi-uniformity

MSC

  • 54E15
  • 03B35

MML

  • identifier: UNIFORM2
  • version: 8.1.05 5.37.1275
Uneingeschränkter Zugang

Uniform Space

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 215 - 226

Zusammenfassung

Abstract

In this article, we formalize in Mizar [1] the notion of uniform space introduced by André Weil using the concepts of entourages [2].

We present some results between uniform space and pseudo metric space. We introduce the concepts of left-uniformity and right-uniformity of a topological group.

Next, we define the concept of the partition topology. Following the Vlach’s works [11, 10], we define the semi-uniform space induced by a tolerance and the uniform space induced by an equivalence relation.

Finally, using mostly Gehrke, Grigorieff and Pin [4] works, a Pervin uniform space defined from the sets of the form ((X\A) × (X\A)) ∪ (A×A) is presented.

Schlüsselwörter

  • uniform space
  • uniformity
  • pseudo-metric space
  • topological group
  • partition topology
  • Pervin uniform space

MSC

  • 54E15
  • 03B35

MML

  • identifier: UNIFORM3
  • version: 8.1.05 5.37.1275
Uneingeschränkter Zugang

Some Algebraic Properties of Polynomial Rings

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 227 - 237

Zusammenfassung

Abstract

In this article we extend the algebraic theory of polynomial rings, formalized in Mizar [1], based on [2], [3]. After introducing constant and monic polynomials we present the canonical embedding of R into R[X] and deal with both unit and irreducible elements. We also define polynomial GCDs and show that for fields F and irreducible polynomials p the field F[X]/<p> is isomorphic to the field of polynomials with degree smaller than the one of p.

Schlüsselwörter

  • polynomial
  • polynomial ring
  • polynomial GCD

MSC

  • 12E05
  • 11T55
  • 03B35

MML

  • identifier: RING_4
  • version: 8.1.05 5.37.1275
0 Artikel
Uneingeschränkter Zugang

Compactness in Metric Spaces

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 167 - 172

Zusammenfassung

Schlüsselwörter

  • metric spaces
  • normed linear spaces
  • compactness

MSC

  • 46B50
  • 54E45
  • 03B35

MML

  • identifier: TOPMETR4
  • version: 8.1.05 5.37.1275
Uneingeschränkter Zugang

Double Sequences and Iterated Limits in Regular Space

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 173 - 186

Zusammenfassung

Abstract

First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on ℕ (F1) with the Fréchet filter on ℕ × ℕ (F2), we compare limF₁ and limF₂ for all double sequences in a non empty topological space.

Endou, Okazaki and Shidama formalized in [14] the “convergence in Pringsheim’s sense” for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter convergence in a topological space. Then we formalize that the double sequence converges in “Pringsheim’s sense” but not in Frechet filter on ℕ × ℕ sense.

In the next section, we generalize some definitions: “is convergent in the first coordinate”, “is convergent in the second coordinate”, “the lim in the first coordinate of”, “the lim in the second coordinate of” according to [14], in Hausdorff space.

Finally, we generalize two theorems: (3) and (4) from [14] in the case of double sequences and we formalize the “iterated limit” theorem (“Double limit” [7], p. 81, par. 8.5 “Double limite” [6] (TG I,57)), all in regular space. We were inspired by the exercises (2.11.4), (2.17.5) [17] and the corrections B.10 [18].

Schlüsselwörter

  • filter
  • double limits
  • Pringsheim convergence
  • iterated limits
  • regular space

MSC

  • 54A20
  • 40A05
  • 40B05
  • 03B35

MML

  • identifier: CARDFIL4
  • version: 8.1.05 5.37.1275
Uneingeschränkter Zugang

Prime Factorization of Sums and Differences of Two Like Powers

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 187 - 198

Zusammenfassung

Abstract

Representation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [4], [3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases).

Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization, which could serve in further development of Mizar projects [2]. This could be regarded as one of the important benefits of proof formalization [9].

Schlüsselwörter

  • integers
  • factorization
  • primes

MSC

  • 11A51
  • 03B35

MML

  • identifier: NEWTON03
  • version: 8.1.05 5.37.1275
Uneingeschränkter Zugang

Riemann-Stieltjes Integral

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 199 - 204

Zusammenfassung

Abstract

In this article, the definitions and basic properties of Riemann-Stieltjes integral are formalized in Mizar [1]. In the first section, we showed the preliminary definition. We proved also some properties of finite sequences of real numbers. In Sec. 2, we defined variation. Using the definition, we also defined bounded variation and total variation, and proved theorems about related properties.

In Sec. 3, we defined Riemann-Stieltjes integral. Referring to the way of the article [7], we described the definitions. In the last section, we proved theorems about linearity of Riemann-Stieltjes integral. Because there are two types of linearity in Riemann-Stieltjes integral, we proved linearity in two ways. We showed the proof of theorems based on the description of the article [7]. These formalizations are based on [8], [5], [3], and [4].

Schlüsselwörter

  • Riemann-Stieltjes integral
  • bounded variation
  • linearity

MSC

  • 26A42
  • 26A45
  • 03B35

MML

  • identifier: INTEGR22
  • version: 8.1.05 5.37.1275
Uneingeschränkter Zugang

Quasi-uniform Space

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 205 - 214

Zusammenfassung

Abstract

In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space.

We define the topology induced by a quasi-uniform space. Finally we formalize from the sets of the form ((X \ Ω) × X) ∪ (X × Ω), the Csaszar-Pervin quasi-uniform space induced by a topological space.

Schlüsselwörter

  • quasi-uniform space
  • quasi-uniformity
  • Pervin space
  • Csaszar-Pervin quasi-uniformity

MSC

  • 54E15
  • 03B35

MML

  • identifier: UNIFORM2
  • version: 8.1.05 5.37.1275
Uneingeschränkter Zugang

Uniform Space

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 215 - 226

Zusammenfassung

Abstract

In this article, we formalize in Mizar [1] the notion of uniform space introduced by André Weil using the concepts of entourages [2].

We present some results between uniform space and pseudo metric space. We introduce the concepts of left-uniformity and right-uniformity of a topological group.

Next, we define the concept of the partition topology. Following the Vlach’s works [11, 10], we define the semi-uniform space induced by a tolerance and the uniform space induced by an equivalence relation.

Finally, using mostly Gehrke, Grigorieff and Pin [4] works, a Pervin uniform space defined from the sets of the form ((X\A) × (X\A)) ∪ (A×A) is presented.

Schlüsselwörter

  • uniform space
  • uniformity
  • pseudo-metric space
  • topological group
  • partition topology
  • Pervin uniform space

MSC

  • 54E15
  • 03B35

MML

  • identifier: UNIFORM3
  • version: 8.1.05 5.37.1275
Uneingeschränkter Zugang

Some Algebraic Properties of Polynomial Rings

Online veröffentlicht: 21 Feb 2017
Seitenbereich: 227 - 237

Zusammenfassung

Abstract

In this article we extend the algebraic theory of polynomial rings, formalized in Mizar [1], based on [2], [3]. After introducing constant and monic polynomials we present the canonical embedding of R into R[X] and deal with both unit and irreducible elements. We also define polynomial GCDs and show that for fields F and irreducible polynomials p the field F[X]/<p> is isomorphic to the field of polynomials with degree smaller than the one of p.

Schlüsselwörter

  • polynomial
  • polynomial ring
  • polynomial GCD

MSC

  • 12E05
  • 11T55
  • 03B35

MML

  • identifier: RING_4
  • version: 8.1.05 5.37.1275