The binary set {0, 1} together with modulo-2 addition and multiplication is called a binary field, which is denoted by F2. The binary field F2 is defined in [1]. A vector space over F2 is called a binary vector space. The set of all binary vectors of length n forms an n-dimensional vector space Vn over F2. Binary fields and n-dimensional binary vector spaces play an important role in practical computer science, for example, coding theory [15] and cryptology. In cryptology, binary fields and n-dimensional binary vector spaces are very important in proving the security of cryptographic systems [13]. In this article we define the n-dimensional binary vector space Vn. Moreover, we formalize some facts about the n-dimensional binary vector space Vn.
We first provide a modified version of the proof in [3] that
the Sorgenfrey line is T1. Here, we prove that it is in fact T2, a stronger result.
Next, we prove that all subspaces of ℝ1 (that is the real line with the usual
topology) are Lindel¨of. We utilize this result in the proof that the Sorgenfrey
line is Lindel¨of, which is based on the proof found in [8]. Next, we construct the
Sorgenfrey plane, as the product topology of the Sorgenfrey line and itself. We
prove that the Sorgenfrey plane is not Lindel¨of, and therefore the product space
of two Lindel¨of spaces need not be Lindel¨of. Further, we note that the Sorgenfrey
line is regular, following from [3]:59. Next, we observe that the Sorgenfrey line is
normal since it is both regular and Lindel¨of. Finally, we prove that the Sorgenfrey
plane is not normal, and hence the product of two normal spaces need not be
normal. The proof that the Sorgenfrey plane is not normal and many of the
lemmas leading up to this result are modelled after the proof in [3], that the
Niemytzki plane is not normal. Information was also gathered from [15].
This paper is a continuation of [19], where the divisibility criteria for initial prime numbers based on their representation in the decimal system were formalized. In the current paper we consider all primes up to 101 to demonstrate the method presented in [7].
Published Online: 01 Jun 2013 Page range: 95 - 102
Abstract
Summary
In this article we formalized the Fréchet differentiation. It is defined as a generalization of the differentiation of a real-valued function of a single real variable to more general functions whose domain and range are subsets of normed spaces [14].
Published Online: 01 Jun 2013 Page range: 103 - 113
Abstract
Summary
In the article the formal characterization of triangular numbers (famous from [15] and words “EYPHKA! num = Δ+Δ+Δ”) [17] is given. Our primary aim was to formalize one of the items (#42) from Wiedijk’s Top 100 Mathematical Theorems list [33], namely that the sequence of sums of reciprocals of triangular numbers converges to 2. This Mizar representation was written in 2007. As the Mizar language evolved and attributes with arguments were implemented, we decided to extend these lines and we characterized polygonal numbers. We formalized centered polygonal numbers, the connection between triangular and square numbers, and also some equalities involving Mersenne primes and perfect numbers. We gave also explicit formula to obtain from the polygonal number its ordinal index. Also selected congruences modulo 10 were enumerated. Our work basically covers the Wikipedia item for triangular numbers and the Online Encyclopedia of Integer Sequences (http://oeis.org/A000217). An interesting related result [16] could be the proof of Lagrange’s four-square theorem or Fermat’s polygonal number theorem [32].
Published Online: 01 Jun 2013 Page range: 115 - 125
Abstract
Summary
Gaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rational number field and a quotient field of the Gaussian integer ring are isomorphic.
Published Online: 01 Jun 2013 Page range: 133 - 143
Abstract
Summary
Huffman coding is one of a most famous entropy encoding methods for lossless data compression [16]. JPEG and ZIP formats employ variants of Huffman encoding as lossless compression algorithms. Huffman coding is a bijective map from source letters into leaves of the Huffman tree constructed by the algorithm. In this article we formalize an algorithm constructing a binary code tree, Huffman tree.
Published Online: 01 Jun 2013 Page range: 145 - 152
Abstract
Summary
In this article we deal with the Riemann integral of functions from R into a real Banach space. The last theorem establishes the integrability of continuous functions on the closed interval of reals. To prove the integrability we defined uniform continuity for functions from R into a real normed space, and proved related theorems. We also stated some properties of finite sequences of elements of a real normed space and finite sequences of real numbers. In addition we proved some theorems about the convergence of sequences. We applied definitions introduced in the previous article [21] to the proof of integrability.
Published Online: 01 Jun 2013 Page range: 153 - 162
Abstract
Summary
In the article the formal characterization of square-free numbers is shown; in this manner the paper is the continuation of [19]. Essentially, we prepared some lemmas for convenient work with numbers (including the proof that the sequence of prime reciprocals diverges [1]) according to [18] which were absent in the Mizar Mathematical Library. Some of them were expressed in terms of clusters’ registrations, enabling automatization machinery available in the Mizar system. Our main result of the article is in the final section; we proved that the lattice of positive divisors of a positive integer n is Boolean if and only if n is square-free.
The binary set {0, 1} together with modulo-2 addition and multiplication is called a binary field, which is denoted by F2. The binary field F2 is defined in [1]. A vector space over F2 is called a binary vector space. The set of all binary vectors of length n forms an n-dimensional vector space Vn over F2. Binary fields and n-dimensional binary vector spaces play an important role in practical computer science, for example, coding theory [15] and cryptology. In cryptology, binary fields and n-dimensional binary vector spaces are very important in proving the security of cryptographic systems [13]. In this article we define the n-dimensional binary vector space Vn. Moreover, we formalize some facts about the n-dimensional binary vector space Vn.
We first provide a modified version of the proof in [3] that
the Sorgenfrey line is T1. Here, we prove that it is in fact T2, a stronger result.
Next, we prove that all subspaces of ℝ1 (that is the real line with the usual
topology) are Lindel¨of. We utilize this result in the proof that the Sorgenfrey
line is Lindel¨of, which is based on the proof found in [8]. Next, we construct the
Sorgenfrey plane, as the product topology of the Sorgenfrey line and itself. We
prove that the Sorgenfrey plane is not Lindel¨of, and therefore the product space
of two Lindel¨of spaces need not be Lindel¨of. Further, we note that the Sorgenfrey
line is regular, following from [3]:59. Next, we observe that the Sorgenfrey line is
normal since it is both regular and Lindel¨of. Finally, we prove that the Sorgenfrey
plane is not normal, and hence the product of two normal spaces need not be
normal. The proof that the Sorgenfrey plane is not normal and many of the
lemmas leading up to this result are modelled after the proof in [3], that the
Niemytzki plane is not normal. Information was also gathered from [15].
This paper is a continuation of [19], where the divisibility criteria for initial prime numbers based on their representation in the decimal system were formalized. In the current paper we consider all primes up to 101 to demonstrate the method presented in [7].
In this article we formalized the Fréchet differentiation. It is defined as a generalization of the differentiation of a real-valued function of a single real variable to more general functions whose domain and range are subsets of normed spaces [14].
In the article the formal characterization of triangular numbers (famous from [15] and words “EYPHKA! num = Δ+Δ+Δ”) [17] is given. Our primary aim was to formalize one of the items (#42) from Wiedijk’s Top 100 Mathematical Theorems list [33], namely that the sequence of sums of reciprocals of triangular numbers converges to 2. This Mizar representation was written in 2007. As the Mizar language evolved and attributes with arguments were implemented, we decided to extend these lines and we characterized polygonal numbers. We formalized centered polygonal numbers, the connection between triangular and square numbers, and also some equalities involving Mersenne primes and perfect numbers. We gave also explicit formula to obtain from the polygonal number its ordinal index. Also selected congruences modulo 10 were enumerated. Our work basically covers the Wikipedia item for triangular numbers and the Online Encyclopedia of Integer Sequences (http://oeis.org/A000217). An interesting related result [16] could be the proof of Lagrange’s four-square theorem or Fermat’s polygonal number theorem [32].
Gaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rational number field and a quotient field of the Gaussian integer ring are isomorphic.
Huffman coding is one of a most famous entropy encoding methods for lossless data compression [16]. JPEG and ZIP formats employ variants of Huffman encoding as lossless compression algorithms. Huffman coding is a bijective map from source letters into leaves of the Huffman tree constructed by the algorithm. In this article we formalize an algorithm constructing a binary code tree, Huffman tree.
In this article we deal with the Riemann integral of functions from R into a real Banach space. The last theorem establishes the integrability of continuous functions on the closed interval of reals. To prove the integrability we defined uniform continuity for functions from R into a real normed space, and proved related theorems. We also stated some properties of finite sequences of elements of a real normed space and finite sequences of real numbers. In addition we proved some theorems about the convergence of sequences. We applied definitions introduced in the previous article [21] to the proof of integrability.
In the article the formal characterization of square-free numbers is shown; in this manner the paper is the continuation of [19]. Essentially, we prepared some lemmas for convenient work with numbers (including the proof that the sequence of prime reciprocals diverges [1]) according to [18] which were absent in the Mizar Mathematical Library. Some of them were expressed in terms of clusters’ registrations, enabling automatization machinery available in the Mizar system. Our main result of the article is in the final section; we proved that the lattice of positive divisors of a positive integer n is Boolean if and only if n is square-free.