Journal & Issues

Volume 30 (2022): Issue 4 (December 2022)

Volume 30 (2022): Issue 3 (October 2022)

Volume 30 (2022): Issue 2 (July 2022)

Volume 30 (2022): Issue 1 (April 2022)

Volume 29 (2021): Issue 4 (December 2021)

Volume 29 (2021): Issue 3 (September 2021)

Volume 29 (2021): Issue 2 (July 2021)

Volume 29 (2021): Issue 1 (April 2021)

Volume 28 (2020): Issue 4 (December 2020)

Volume 28 (2020): Issue 3 (October 2020)

Volume 28 (2020): Issue 2 (July 2020)

Volume 28 (2020): Issue 1 (April 2020)

Volume 27 (2019): Issue 4 (December 2019)

Volume 27 (2019): Issue 3 (October 2019)

Volume 27 (2019): Issue 2 (July 2019)

Volume 27 (2019): Issue 1 (April 2019)

Volume 26 (2018): Issue 4 (December 2018)

Volume 26 (2018): Issue 3 (October 2018)

Volume 26 (2018): Issue 2 (July 2018)

Volume 26 (2018): Issue 1 (April 2018)

Volume 25 (2017): Issue 4 (December 2017)

Volume 25 (2017): Issue 3 (October 2017)

Volume 25 (2017): Issue 2 (July 2017)

Volume 25 (2017): Issue 1 (March 2017)

Volume 24 (2016): Issue 4 (December 2016)

Volume 24 (2016): Issue 3 (September 2016)

Volume 24 (2016): Issue 2 (June 2016)

Volume 24 (2016): Issue 1 (March 2016)

Volume 23 (2015): Issue 4 (December 2015)

Volume 23 (2015): Issue 3 (September 2015)

Volume 23 (2015): Issue 2 (June 2015)

Volume 23 (2015): Issue 1 (March 2015)

Volume 22 (2014): Issue 4 (December 2014)

Volume 22 (2014): Issue 3 (September 2014)

Volume 22 (2014): Issue 2 (June 2014)
Special Issue: 25 years of the Mizar Mathematical Library

Volume 22 (2014): Issue 1 (March 2014)

Volume 21 (2013): Issue 4 (December 2013)

Volume 21 (2013): Issue 3 (October 2013)

Volume 21 (2013): Issue 2 (June 2013)

Volume 21 (2013): Issue 1 (January 2013)

Volume 20 (2012): Issue 4 (December 2012)

Volume 20 (2012): Issue 3 (December 2012)

Volume 20 (2012): Issue 2 (December 2012)

Volume 20 (2012): Issue 1 (January 2012)

Volume 19 (2011): Issue 4 (January 2011)

Volume 19 (2011): Issue 3 (January 2011)

Volume 19 (2011): Issue 2 (January 2011)

Volume 19 (2011): Issue 1 (January 2011)

Volume 18 (2010): Issue 4 (January 2010)

Volume 18 (2010): Issue 3 (January 2010)

Volume 18 (2010): Issue 2 (January 2010)

Volume 18 (2010): Issue 1 (January 2010)

Volume 17 (2009): Issue 4 (January 2009)

Volume 17 (2009): Issue 3 (January 2009)

Volume 17 (2009): Issue 2 (January 2009)

Volume 17 (2009): Issue 1 (January 2009)

Volume 16 (2008): Issue 4 (January 2008)

Volume 16 (2008): Issue 3 (January 2008)

Volume 16 (2008): Issue 2 (January 2008)

Volume 16 (2008): Issue 1 (January 2008)

Volume 15 (2007): Issue 4 (January 2007)

Volume 15 (2007): Issue 3 (January 2007)

Volume 15 (2007): Issue 2 (January 2007)

Volume 15 (2007): Issue 1 (January 2007)

Volume 14 (2006): Issue 4 (January 2006)

Volume 14 (2006): Issue 3 (January 2006)

Volume 14 (2006): Issue 2 (January 2006)

Volume 14 (2006): Issue 1 (January 2006)

Journal Details
Format
Journal
eISSN
1898-9934
First Published
09 Jun 2008
Publication timeframe
4 times per year
Languages
English

Search

Volume 23 (2015): Issue 1 (March 2015)

Journal Details
Format
Journal
eISSN
1898-9934
First Published
09 Jun 2008
Publication timeframe
4 times per year
Languages
English

Search

0 Articles
Open Access

Categorical Pullbacks

Published Online: 31 Mar 2015
Page range: 1 - 14

Abstract

Summary

The main purpose of this article is to introduce the categorical concept of pullback in Mizar. In the first part of this article we redefine homsets, monomorphisms, epimorpshisms and isomorphisms [7] within a free-object category [1] and it is shown there that ordinal numbers can be considered as categories. Then the pullback is introduced in terms of its universal property and the Pullback Lemma is formalized [15]. In the last part of the article we formalize the pullback of functors [14] and it is also shown that it is not possible to write an equivalent definition in the context of the previous Mizar formalization of category theory [8].

Keywords

  • category pullback
  • pullback lemma

MSC

  • 18A30
  • 03B35

MML

  • identifier: CAT 7
  • version: 8.1.03 5.29.1227
Open Access

Definition and Properties of Direct Sum Decomposition of Groups1

Published Online: 31 Mar 2015
Page range: 15 - 27

Abstract

Summary

In this article, direct sum decomposition of group is mainly discussed. In the second section, support of element of direct product group is defined and its properties are formalized. It is formalized here that an element of direct product group belongs to its direct sum if and only if support of the element is finite. In the third section, product map and sum map are prepared. In the fourth section, internal and external direct sum are defined. In the last section, an equivalent form of internal direct sum is proved. We referred to [23], [22], [8] and [18] in the formalization.

Keywords

  • group theory
  • direct sum decomposition

MSC

  • 20E34
  • 03B35

MML

  • identifier: GROUP_19
  • version: 8.1.03 5.29.1227
Open Access

Matrix of ℤ-module1

Published Online: 31 Mar 2015
Page range: 29 - 49

Abstract

Summary

In this article, we formalize a matrix of ℤ-module and its properties. Specially, we formalize a matrix of a linear transformation of ℤ-module, a bilinear form and a matrix of the bilinear form (Gramian matrix). We formally prove that for a finite-rank free ℤ-module V, determinant of its Gramian matrix is constant regardless of selection of its basis. ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattices [22] and coding theory [14]. Some theorems in this article are described by translating theorems in [24], [26] and [19] into theorems of ℤ-module.

Keywords

  • matrix of Z-module
  • matrix of linear transformation
  • bilinear form

MSC

  • 11E39
  • 13C10
  • 03B35

MML

  • identifier: ZMATRLIN
  • version: 8.1.04 5.31.1231
Open Access

σ-ring and σ-algebra of Sets1

Published Online: 31 Mar 2015
Page range: 51 - 57

Abstract

Summary

In this article, semiring and semialgebra of sets are formalized so as to construct a measure of a given set in the next step. Although a semiring of sets has already been formalized in [13], that is, strictly speaking, a definition of a quasi semiring of sets suggested in the last few decades [15]. We adopt a classical definition of a semiring of sets here to avoid such a confusion. Ring of sets and algebra of sets have been formalized as non empty preboolean set [23] and field of subsets [18], respectively. In the second section, definitions of a ring and a σ-ring of sets, which are based on a semiring and a ring of sets respectively, are formalized and their related theorems are proved. In the third section, definitions of an algebra and a σ-algebra of sets, which are based on a semialgebra and an algebra of sets respectively, are formalized and their related theorems are proved. In the last section, mutual relationships between σ-ring and σ-algebra of sets are formalized and some related examples are given. The formalization is based on [15], and also referred to [9] and [16].

Keywords

  • semiring of sets
  • σ-ring of sets
  • σ-algebra of sets

MSC

  • 03E30
  • 28A05
  • 03B35

MML

  • identifier: SRINGS 3
  • version: 8.1.04 5.31.1231
Open Access

Separability of Real Normed Spaces and Its Basic Properties

Published Online: 31 Mar 2015
Page range: 59 - 65

Abstract

Summary

In this article, the separability of real normed spaces and its properties are mainly formalized. In the first section, it is proved that a real normed subspace is separable if it is generated by a countable subset. We used here the fact that the rational numbers form a dense subset of the real numbers. In the second section, the basic properties of the separable normed spaces are discussed. It is applied to isomorphic spaces via bounded linear operators and double dual spaces. In the last section, it is proved that the completeness and reflexivity are transferred to sublinear normed spaces. The formalization is based on [34], and also referred to [7], [14] and [16].

Keywords

  • functional analysis
  • normed linear space
  • topological vector space

MSC

  • 46B20
  • 46A19
  • 03B35

MML

  • identifier: NORMSP _4
  • version: 8.1.04 5.31.1231
Open Access

Equivalent Expressions of Direct Sum Decomposition of Groups1

Published Online: 31 Mar 2015
Page range: 67 - 73

Abstract

Summary

In this article, the equivalent expressions of the direct sum decomposition of groups are mainly discussed. In the first section, we formalize the fact that the internal direct sum decomposition can be defined as normal subgroups and some of their properties. In the second section, we formalize an equivalent form of internal direct sum of commutative groups. In the last section, we formalize that the external direct sum leads an internal direct sum. We referred to [19], [18] [8] and [14] in the formalization.

Keywords

  • group theory
  • direct sum decomposition

MSC

  • 20E34
  • 03B35

MML

  • identifier: GROUP _20
  • version: 8.1.04 5.31.1231
0 Articles
Open Access

Categorical Pullbacks

Published Online: 31 Mar 2015
Page range: 1 - 14

Abstract

Summary

The main purpose of this article is to introduce the categorical concept of pullback in Mizar. In the first part of this article we redefine homsets, monomorphisms, epimorpshisms and isomorphisms [7] within a free-object category [1] and it is shown there that ordinal numbers can be considered as categories. Then the pullback is introduced in terms of its universal property and the Pullback Lemma is formalized [15]. In the last part of the article we formalize the pullback of functors [14] and it is also shown that it is not possible to write an equivalent definition in the context of the previous Mizar formalization of category theory [8].

Keywords

  • category pullback
  • pullback lemma

MSC

  • 18A30
  • 03B35

MML

  • identifier: CAT 7
  • version: 8.1.03 5.29.1227
Open Access

Definition and Properties of Direct Sum Decomposition of Groups1

Published Online: 31 Mar 2015
Page range: 15 - 27

Abstract

Summary

In this article, direct sum decomposition of group is mainly discussed. In the second section, support of element of direct product group is defined and its properties are formalized. It is formalized here that an element of direct product group belongs to its direct sum if and only if support of the element is finite. In the third section, product map and sum map are prepared. In the fourth section, internal and external direct sum are defined. In the last section, an equivalent form of internal direct sum is proved. We referred to [23], [22], [8] and [18] in the formalization.

Keywords

  • group theory
  • direct sum decomposition

MSC

  • 20E34
  • 03B35

MML

  • identifier: GROUP_19
  • version: 8.1.03 5.29.1227
Open Access

Matrix of ℤ-module1

Published Online: 31 Mar 2015
Page range: 29 - 49

Abstract

Summary

In this article, we formalize a matrix of ℤ-module and its properties. Specially, we formalize a matrix of a linear transformation of ℤ-module, a bilinear form and a matrix of the bilinear form (Gramian matrix). We formally prove that for a finite-rank free ℤ-module V, determinant of its Gramian matrix is constant regardless of selection of its basis. ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattices [22] and coding theory [14]. Some theorems in this article are described by translating theorems in [24], [26] and [19] into theorems of ℤ-module.

Keywords

  • matrix of Z-module
  • matrix of linear transformation
  • bilinear form

MSC

  • 11E39
  • 13C10
  • 03B35

MML

  • identifier: ZMATRLIN
  • version: 8.1.04 5.31.1231
Open Access

σ-ring and σ-algebra of Sets1

Published Online: 31 Mar 2015
Page range: 51 - 57

Abstract

Summary

In this article, semiring and semialgebra of sets are formalized so as to construct a measure of a given set in the next step. Although a semiring of sets has already been formalized in [13], that is, strictly speaking, a definition of a quasi semiring of sets suggested in the last few decades [15]. We adopt a classical definition of a semiring of sets here to avoid such a confusion. Ring of sets and algebra of sets have been formalized as non empty preboolean set [23] and field of subsets [18], respectively. In the second section, definitions of a ring and a σ-ring of sets, which are based on a semiring and a ring of sets respectively, are formalized and their related theorems are proved. In the third section, definitions of an algebra and a σ-algebra of sets, which are based on a semialgebra and an algebra of sets respectively, are formalized and their related theorems are proved. In the last section, mutual relationships between σ-ring and σ-algebra of sets are formalized and some related examples are given. The formalization is based on [15], and also referred to [9] and [16].

Keywords

  • semiring of sets
  • σ-ring of sets
  • σ-algebra of sets

MSC

  • 03E30
  • 28A05
  • 03B35

MML

  • identifier: SRINGS 3
  • version: 8.1.04 5.31.1231
Open Access

Separability of Real Normed Spaces and Its Basic Properties

Published Online: 31 Mar 2015
Page range: 59 - 65

Abstract

Summary

In this article, the separability of real normed spaces and its properties are mainly formalized. In the first section, it is proved that a real normed subspace is separable if it is generated by a countable subset. We used here the fact that the rational numbers form a dense subset of the real numbers. In the second section, the basic properties of the separable normed spaces are discussed. It is applied to isomorphic spaces via bounded linear operators and double dual spaces. In the last section, it is proved that the completeness and reflexivity are transferred to sublinear normed spaces. The formalization is based on [34], and also referred to [7], [14] and [16].

Keywords

  • functional analysis
  • normed linear space
  • topological vector space

MSC

  • 46B20
  • 46A19
  • 03B35

MML

  • identifier: NORMSP _4
  • version: 8.1.04 5.31.1231
Open Access

Equivalent Expressions of Direct Sum Decomposition of Groups1

Published Online: 31 Mar 2015
Page range: 67 - 73

Abstract

Summary

In this article, the equivalent expressions of the direct sum decomposition of groups are mainly discussed. In the first section, we formalize the fact that the internal direct sum decomposition can be defined as normal subgroups and some of their properties. In the second section, we formalize an equivalent form of internal direct sum of commutative groups. In the last section, we formalize that the external direct sum leads an internal direct sum. We referred to [19], [18] [8] and [14] in the formalization.

Keywords

  • group theory
  • direct sum decomposition

MSC

  • 20E34
  • 03B35

MML

  • identifier: GROUP _20
  • version: 8.1.04 5.31.1231