Journal & Issues

Volume 30 (2022): Issue 4 (December 2022)

Volume 30 (2022): Issue 3 (October 2022)

Volume 30 (2022): Issue 2 (July 2022)

Volume 30 (2022): Issue 1 (April 2022)

Volume 29 (2021): Issue 4 (December 2021)

Volume 29 (2021): Issue 3 (October 2021)

Volume 29 (2021): Issue 2 (July 2021)

Volume 29 (2021): Issue 1 (April 2021)

Volume 28 (2020): Issue 4 (December 2020)

Volume 28 (2020): Issue 3 (October 2020)

Volume 28 (2020): Issue 2 (July 2020)

Volume 28 (2020): Issue 1 (April 2020)

Volume 27 (2019): Issue 4 (December 2019)

Volume 27 (2019): Issue 3 (October 2019)

Volume 27 (2019): Issue 2 (July 2019)

Volume 27 (2019): Issue 1 (April 2019)

Volume 26 (2018): Issue 4 (December 2018)

Volume 26 (2018): Issue 3 (October 2018)

Volume 26 (2018): Issue 2 (July 2018)

Volume 26 (2018): Issue 1 (April 2018)

Volume 25 (2017): Issue 4 (December 2017)

Volume 25 (2017): Issue 3 (October 2017)

Volume 25 (2017): Issue 2 (July 2017)

Volume 25 (2017): Issue 1 (March 2017)

Volume 24 (2016): Issue 4 (December 2016)

Volume 24 (2016): Issue 3 (September 2016)

Volume 24 (2016): Issue 2 (June 2016)

Volume 24 (2016): Issue 1 (March 2016)

Volume 23 (2015): Issue 4 (December 2015)

Volume 23 (2015): Issue 3 (September 2015)

Volume 23 (2015): Issue 2 (June 2015)

Volume 23 (2015): Issue 1 (March 2015)

Volume 22 (2014): Issue 4 (December 2014)

Volume 22 (2014): Issue 3 (September 2014)

Volume 22 (2014): Issue 2 (June 2014)
Special Issue: 25 years of the Mizar Mathematical Library

Volume 22 (2014): Issue 1 (March 2014)

Volume 21 (2013): Issue 4 (December 2013)

Volume 21 (2013): Issue 3 (October 2013)

Volume 21 (2013): Issue 2 (June 2013)

Volume 21 (2013): Issue 1 (January 2013)

Volume 20 (2012): Issue 4 (December 2012)

Volume 20 (2012): Issue 3 (September 2012)

Volume 20 (2012): Issue 2 (June 2012)

Volume 20 (2012): Issue 1 (January 2012)

Volume 19 (2011): Issue 4 (December 2011)

Volume 19 (2011): Issue 3 (September 2011)

Volume 19 (2011): Issue 2 (June 2011)

Volume 19 (2011): Issue 1 (March 2011)

Volume 18 (2010): Issue 4 (December 2010)

Volume 18 (2010): Issue 3 (September 2010)

Volume 18 (2010): Issue 2 (June 2010)

Volume 18 (2010): Issue 1 (March 2010)

Volume 17 (2009): Issue 4 (December 2009)

Volume 17 (2009): Issue 3 (September 2009)

Volume 17 (2009): Issue 2 (June 2009)

Volume 17 (2009): Issue 1 (March 2009)

Volume 16 (2008): Issue 4 (December 2008)

Volume 16 (2008): Issue 3 (September 2008)

Volume 16 (2008): Issue 2 (June 2008)

Volume 16 (2008): Issue 1 (March 2008)

Volume 15 (2007): Issue 4 (December 2007)

Volume 15 (2007): Issue 3 (September 2007)

Volume 15 (2007): Issue 2 (June 2007)

Volume 15 (2007): Issue 1 (March 2007)

Volume 14 (2006): Issue 4 (December 2006)

Volume 14 (2006): Issue 3 (September 2006)

Volume 14 (2006): Issue 2 (June 2006)

Volume 14 (2006): Issue 1 (March 2006)

Journal Details
Format
Journal
eISSN
1898-9934
ISSN
1426-2630
First Published
09 Jun 2008
Publication timeframe
4 times per year
Languages
English

Search

Volume 14 (2006): Issue 4 (December 2006)

Journal Details
Format
Journal
eISSN
1898-9934
ISSN
1426-2630
First Published
09 Jun 2008
Publication timeframe
4 times per year
Languages
English

Search

12 Articles
Open Access

Multiplication of Polynomials using Discrete Fourier Transformation

Published Online: 13 Jun 2008
Page range: 121 - 128

Abstract

Multiplication of Polynomials using Discrete Fourier Transformation

In this article we define the Discrete Fourier Transformation for univariate polynomials and show that multiplication of polynomials can be carried out by two Fourier Transformations with a vector multiplication in-between. Our proof follows the standard one found in the literature and uses Vandermonde matrices, see e.g. [27].

Open Access

Some Special Matrices of Real Elements and Their Properties

Published Online: 13 Jun 2008
Page range: 129 - 134

Abstract

Some Special Matrices of Real Elements and Their Properties

This article describes definitions of positive matrix, negative matrix, nonpositive matrix, nonnegative matrix, nonzero matrix, module matrix of real elements and their main properties, and we also give the basic inequalities in matrices of real elements.

Open Access

Schur's Theorem on the Stability of Networks

Published Online: 13 Jun 2008
Page range: 135 - 142

Abstract

Schur's Theorem on the Stability of Networks

A complex polynomial is called a Hurwitz polynomial if all its roots have a real part smaller than zero. This kind of polynomial plays an all-dominant role in stability checks of electrical networks.

In this article we prove Schur's criterion [17] that allows to decide whether a polynomial p(x) is Hurwitz without explicitly computing its roots: Schur's recursive algorithm successively constructs polynomials pi(x) of lesser degree by division with x - c, ℜ {c} < 0, such that pi(x) is Hurwitz if and only if p(x) is.

Open Access

Integral of Real-Valued Measurable Function1

Published Online: 13 Jun 2008
Page range: 143 - 152

Abstract

Integral of Real-Valued Measurable Function<sup>1</sup>

Based on [16], authors formalized the integral of an extended real valued measurable function in [12] before. However, the integral argued in [12] cannot be applied to real-valued functions unconditionally. Therefore, in this article we have formalized the integral of a real-value function.

Open Access

The Catalan Numbers. Part II1

Published Online: 13 Jun 2008
Page range: 153 - 159

Abstract

The Catalan Numbers. Part II<sup>1</sup>

In this paper, we define sequence dominated by 0, in which every initial fragment contains more zeroes than ones. If n ≥ 2 · m and n > 0, then the number of sequences dominated by 0 the length n including m of ones, is given by the formula

and satisfies the recurrence relation

Obviously, if n = 2 · m, then we obtain the recurrence relation for the Catalan numbers (starting from 0)

Using the above recurrence relation we can see that

where and hence

MML identifier: CATALAN2, version: 7.8.03 4.75.958

Open Access

The Quaternion Numbers

Published Online: 13 Jun 2008
Page range: 161 - 169

Abstract

The Quaternion Numbers

In this article, we define the set H of quaternion numbers as the set of all ordered sequences q = <x,y,w,z> where x,y,w and z are real numbers. The addition, difference and multiplication of the quaternion numbers are also defined. We define the real and imaginary parts of q and denote this by x = ℜ(q), y = ℑ1(q), w = ℑ2(q), z = ℑ3(q). We define the addition, difference, multiplication again and denote this operation by real and three imaginary parts. We define the conjugate of q denoted by q*' and the absolute value of q denoted by |q|. We also give some properties of quaternion numbers.

Open Access

Model Checking. Part I

Published Online: 13 Jun 2008
Page range: 171 - 186

Abstract

Model Checking. Part I

This text includes definitions of the Kripke structure, CTL (Computation Tree Logic), and verification of the basic algorithm for Model Checking based on CTL in [10].

Open Access

Recognizing Chordal Graphs: Lex BFS and MCS1

Published Online: 13 Jun 2008
Page range: 187 - 206

Abstract

Recognizing Chordal Graphs: Lex BFS and MCS<sup>1</sup>

We are formalizing the algorithm for recognizing chordal graphs by lexicographic breadth-first search as presented in [13, Section 3 of Chapter 4, pp. 81-84]. Then we follow with a formalization of another algorithm serving the same end but based on maximum cardinality search as presented by Tarjan and Yannakakis [25].

This work is a part of the MSc work of the first author under supervision of the second author. We would like to thank one of the anonymous reviewers for very useful suggestions.

Open Access

Integrability and the Integral of Partial Functions from R into R1

Published Online: 13 Jun 2008
Page range: 207 - 212

Abstract

Integrability and the Integral of Partial Functions from R into R<sup>1</sup>

In this paper, we showed the linearity of the indefinite integral the form of which was introduced in [11]. In addition, we proved some theorems about the integral calculus on the subinterval of [a,b]. As a result, we described the fundamental theorem of calculus, that we developed in [11], by a more general expression.

Open Access

Baire's Category Theorem and Some Spaces Generated from Real Normed Space1

Published Online: 13 Jun 2008
Page range: 213 - 219

Abstract

Baire's Category Theorem and Some Spaces Generated from Real Normed Space<sup>1</sup>

As application of complete metric space, we proved a Baire's category theorem. Then we defined some spaces generated from real normed space and discussed each of them. In the second section, we showed the equivalence of convergence and the continuity of a function. In other sections, we showed some topological properties of two spaces, which are topological space and linear topological space generated from real normed space.

Open Access

On the Representation of Natural Numbers in Positional Numeral Systems1

Published Online: 13 Jun 2008
Page range: 221 - 223

Abstract

On the Representation of Natural Numbers in Positional Numeral Systems<sup>1</sup>

In this paper we show that every natural number can be uniquely represented as a base-b numeral. The formalization is based on the proof presented in [11]. We also prove selected divisibility criteria in the base-10 numeral system.

Open Access

The Relevance of Measure and Probability, and Definition of Completeness of Probability

Published Online: 13 Jun 2008
Page range: 225 - 229

Abstract

The Relevance of Measure and Probability, and Definition of Completeness of Probability

In this article, we first discuss the relation between measure defined using extended real numbers and probability defined using real numbers. Further, we define completeness of probability, and its completion method, and also show that they coincide with those of measure.

12 Articles
Open Access

Multiplication of Polynomials using Discrete Fourier Transformation

Published Online: 13 Jun 2008
Page range: 121 - 128

Abstract

Multiplication of Polynomials using Discrete Fourier Transformation

In this article we define the Discrete Fourier Transformation for univariate polynomials and show that multiplication of polynomials can be carried out by two Fourier Transformations with a vector multiplication in-between. Our proof follows the standard one found in the literature and uses Vandermonde matrices, see e.g. [27].

Open Access

Some Special Matrices of Real Elements and Their Properties

Published Online: 13 Jun 2008
Page range: 129 - 134

Abstract

Some Special Matrices of Real Elements and Their Properties

This article describes definitions of positive matrix, negative matrix, nonpositive matrix, nonnegative matrix, nonzero matrix, module matrix of real elements and their main properties, and we also give the basic inequalities in matrices of real elements.

Open Access

Schur's Theorem on the Stability of Networks

Published Online: 13 Jun 2008
Page range: 135 - 142

Abstract

Schur's Theorem on the Stability of Networks

A complex polynomial is called a Hurwitz polynomial if all its roots have a real part smaller than zero. This kind of polynomial plays an all-dominant role in stability checks of electrical networks.

In this article we prove Schur's criterion [17] that allows to decide whether a polynomial p(x) is Hurwitz without explicitly computing its roots: Schur's recursive algorithm successively constructs polynomials pi(x) of lesser degree by division with x - c, ℜ {c} < 0, such that pi(x) is Hurwitz if and only if p(x) is.

Open Access

Integral of Real-Valued Measurable Function1

Published Online: 13 Jun 2008
Page range: 143 - 152

Abstract

Integral of Real-Valued Measurable Function<sup>1</sup>

Based on [16], authors formalized the integral of an extended real valued measurable function in [12] before. However, the integral argued in [12] cannot be applied to real-valued functions unconditionally. Therefore, in this article we have formalized the integral of a real-value function.

Open Access

The Catalan Numbers. Part II1

Published Online: 13 Jun 2008
Page range: 153 - 159

Abstract

The Catalan Numbers. Part II<sup>1</sup>

In this paper, we define sequence dominated by 0, in which every initial fragment contains more zeroes than ones. If n ≥ 2 · m and n > 0, then the number of sequences dominated by 0 the length n including m of ones, is given by the formula

and satisfies the recurrence relation

Obviously, if n = 2 · m, then we obtain the recurrence relation for the Catalan numbers (starting from 0)

Using the above recurrence relation we can see that

where and hence

MML identifier: CATALAN2, version: 7.8.03 4.75.958

Open Access

The Quaternion Numbers

Published Online: 13 Jun 2008
Page range: 161 - 169

Abstract

The Quaternion Numbers

In this article, we define the set H of quaternion numbers as the set of all ordered sequences q = <x,y,w,z> where x,y,w and z are real numbers. The addition, difference and multiplication of the quaternion numbers are also defined. We define the real and imaginary parts of q and denote this by x = ℜ(q), y = ℑ1(q), w = ℑ2(q), z = ℑ3(q). We define the addition, difference, multiplication again and denote this operation by real and three imaginary parts. We define the conjugate of q denoted by q*' and the absolute value of q denoted by |q|. We also give some properties of quaternion numbers.

Open Access

Model Checking. Part I

Published Online: 13 Jun 2008
Page range: 171 - 186

Abstract

Model Checking. Part I

This text includes definitions of the Kripke structure, CTL (Computation Tree Logic), and verification of the basic algorithm for Model Checking based on CTL in [10].

Open Access

Recognizing Chordal Graphs: Lex BFS and MCS1

Published Online: 13 Jun 2008
Page range: 187 - 206

Abstract

Recognizing Chordal Graphs: Lex BFS and MCS<sup>1</sup>

We are formalizing the algorithm for recognizing chordal graphs by lexicographic breadth-first search as presented in [13, Section 3 of Chapter 4, pp. 81-84]. Then we follow with a formalization of another algorithm serving the same end but based on maximum cardinality search as presented by Tarjan and Yannakakis [25].

This work is a part of the MSc work of the first author under supervision of the second author. We would like to thank one of the anonymous reviewers for very useful suggestions.

Open Access

Integrability and the Integral of Partial Functions from R into R1

Published Online: 13 Jun 2008
Page range: 207 - 212

Abstract

Integrability and the Integral of Partial Functions from R into R<sup>1</sup>

In this paper, we showed the linearity of the indefinite integral the form of which was introduced in [11]. In addition, we proved some theorems about the integral calculus on the subinterval of [a,b]. As a result, we described the fundamental theorem of calculus, that we developed in [11], by a more general expression.

Open Access

Baire's Category Theorem and Some Spaces Generated from Real Normed Space1

Published Online: 13 Jun 2008
Page range: 213 - 219

Abstract

Baire's Category Theorem and Some Spaces Generated from Real Normed Space<sup>1</sup>

As application of complete metric space, we proved a Baire's category theorem. Then we defined some spaces generated from real normed space and discussed each of them. In the second section, we showed the equivalence of convergence and the continuity of a function. In other sections, we showed some topological properties of two spaces, which are topological space and linear topological space generated from real normed space.

Open Access

On the Representation of Natural Numbers in Positional Numeral Systems1

Published Online: 13 Jun 2008
Page range: 221 - 223

Abstract

On the Representation of Natural Numbers in Positional Numeral Systems<sup>1</sup>

In this paper we show that every natural number can be uniquely represented as a base-b numeral. The formalization is based on the proof presented in [11]. We also prove selected divisibility criteria in the base-10 numeral system.

Open Access

The Relevance of Measure and Probability, and Definition of Completeness of Probability

Published Online: 13 Jun 2008
Page range: 225 - 229

Abstract

The Relevance of Measure and Probability, and Definition of Completeness of Probability

In this article, we first discuss the relation between measure defined using extended real numbers and probability defined using real numbers. Further, we define completeness of probability, and its completion method, and also show that they coincide with those of measure.