Journal & Issues

Volume 32 (2023): Issue 3 (July 2023)

Volume 32 (2023): Issue 2 (May 2023)

Volume 32 (2023): Issue 1 (March 2023)

Volume 31 (2022): Issue 3 (November 2022)

Volume 31 (2022): Issue 2 (July 2022)

Volume 31 (2022): Issue 1 (March 2022)

Volume 30 (2021): Issue 4 (November 2021)

Volume 30 (2021): Issue 3 (July 2021)

Volume 30 (2021): Issue 2 (May 2021)

Volume 30 (2021): Issue 1 (March 2021)

Volume 29 (2020): Issue 3 (December 2020)

Volume 29 (2020): Issue 2 (August 2020)

Volume 29 (2020): Issue 1 (April 2020)

Volume 28 (2019): Issue 7 (December 2019)

Volume 28 (2019): Issue 6 (August 2019)

Volume 28 (2019): Issue 5 (May 2019)

Volume 28 (2018): Issue 4 (December 2018)

Volume 28 (2018): Issue 3 (October 2018)

Volume 28 (2018): Issue 2 (August 2018)

Volume 28 (2018): Issue 1 (April 2018)

Volume 27 (2017): Issue 8 (December 2017)

Volume 27 (2017): Issue 7 (September 2017)

Volume 27 (2017): Issue 6 (April 2017)

Volume 27 (2017): Issue 5 (January 2017)

Volume 27 (2016): Issue 4 (October 2016)

Volume 27 (2016): Issue 3 (July 2016)

Volume 27 (2016): Issue 2 (April 2016)

Volume 27 (2016): Issue 1 (January 2016)

Volume 26 (2015): Issue 7 (September 2015)

Volume 26 (2015): Issue 6 (June 2015)

Volume 26 (2015): Issue 5 (March 2015)

Volume 26 (2015): Issue 4 (January 2015)

Volume 26 (2014): Issue 3 (September 2014)

Volume 26 (2014): Issue 2 (July 2014)

Volume 26 (2014): Issue 1 (April 2014)

Volume 25 (2013): Issue 8 (December 2013)

Volume 25 (2013): Issue 7 (September 2013)

Volume 25 (2013): Issue 6 (June 2013)

Volume 25 (2013): Issue 5 (March 2013)

Volume 25 (2012): Issue 4 (December 2012)

Volume 25 (2012): Issue 3 (August 2012)

Volume 25 (2012): Issue 2 (June 2012)

Volume 25 (2012): Issue 1 (February 2012)

Volume 24 (2011): Issue 6 (November 2011)

Volume 24 (2011): Issue 5 (May 2011)

Volume 24 (2011): Issue 4 (January 2011)

Volume 24 (2010): Issue 3 (November 2010)

Volume 24 (2010): Issue 2 (July 2010)

Volume 24 (2010): Issue 1 (April 2010)

Volume 23 (2009): Issue 6 (December 2009)

Volume 23 (2009): Issue 5 (September 2009)

Volume 23 (2009): Issue 4 (May 2009)

Volume 23 (2008): Issue 3 (December 2008)

Volume 23 (2008): Issue 2 (August 2008)

Volume 23 (2008): Issue 1 (April 2008)

Volume 22 (2007): Issue 5 (June 2007)

Volume 22 (2007): Issue 4 (January 2007)

Volume 22 (2006): Issue 3 (October 2006)

Volume 22 (2006): Issue 2 (July 2006)

Volume 22 (2006): Issue 1 (April 2006)

Volume 21 (2005): Issue 8 (December 2005)

Volume 21 (2005): Issue 7 (October 2005)

Volume 21 (2005): Issue 6 (July 2005)

Volume 21 (2005): Issue 5 (April 2005)

Volume 21 (2004): Issue 4 (December 2004)

Volume 21 (2004): Issue 3 (October 2004)

Volume 21 (2004): Issue 2 (July 2004)

Volume 21 (2004): Issue 1 (March 2004)

Volume 20 (2003): Issue 8 (December 2003)

Volume 20 (2003): Issue 7 (November 2003)

Volume 20 (2003): Issue 6 (July 2003)

Volume 20 (2003): Issue 5 (March 2003)

Volume 20 (2002): Issue 4 (December 2002)

Volume 20 (2002): Issue 3 (August 2002)

Volume 20 (2002): Issue 2 (June 2002)

Volume 20 (2002): Issue 1 (February 2002)

Volume 19 (2001): Issue 7 (October 2001)

Volume 19 (2001): Issue 6 (July 2001)

Volume 19 (2001): Issue 5 (April 2001)

Volume 19 (2001): Issue 4 (January 2001)

Volume 19 (2000): Issue 3 (October 2000)

Volume 19 (2000): Issue 2 (July 2000)

Volume 19 (2000): Issue 1 (April 2000)

Volume 18 (1999): Issue 6 (December 1999)

Volume 18 (1999): Issue 5 (July 1999)

Volume 18 (1999): Issue 4 (April 1999)

Volume 18 (1998): Issue 3 (December 1998)

Volume 18 (1998): Issue 2 (August 1998)

Volume 18 (1998): Issue 1 (April 1998)

Volume 17 (1997): Issue 3 (December 1997)

Volume 17 (1997): Issue 2 (September 1997)

Volume 17 (1996): Issue 1 (December 1996)

Volume 16 (1995): Issue 4 (November 1995)

Volume 16 (1995): Issue 3 (July 1995)

Volume 16 (1994): Issue 2 (June 1994)

Volume 16 (1994): Issue 1 (May 1994)

Volume 15 (1992): Issue 3 (November 1992)

Volume 15 (1992): Issue 2 (April 1992)

Volume 15 (1991): Issue 1 (August 1991)

Volume 14 (1990): Issue 6 (June 1990)

Volume 14 (1989): Issue 5 (October 1989)

Volume 14 (1989): Issue 4 (February 1989)

Volume 14 (1989): Issue 3 (January 1989)

Volume 14 (1988): Issue 2 (October 1988)

Volume 14 (1987): Issue 1 (December 1987)

Volume 13 (1986): Issue 5 (December 1986)

Volume 13 (1986): Issue 4 (August 1986)

Volume 13 (1986): Issue 3 (July 1986)

Volume 13 (1985): Issue 2 (December 1985)

Volume 13 (1985): Issue 1 (January 1985)

Volume 12 (1984): Issue 5 (November 1984)

Volume 12 (1984): Issue 4 (July 1984)

Volume 12 (1984): Issue 3 (February 1984)

Volume 12 (1983): Issue 2 (June 1983)

Volume 12 (1983): Issue 1 (February 1983)

Volume 11 (1982): Issue 5 (November 1982)

Volume 11 (1982): Issue 4 (August 1982)

Volume 11 (1982): Issue 3 (January 1982)

Volume 11 (1981): Issue 2 (September 1981)

Volume 11 (1981): Issue 1 (March 1981)

Volume 10 (1980): Issue 3 (October 1980)

Volume 10 (1980): Issue 2 (July 1980)

Volume 10 (1979): Issue 1 (December 1979)

Volume 9 (1978): Issue 5 (December 1978)

Volume 9 (1978): Issue 4 (July 1978)

Volume 9 (1977): Issue 3 (October 1977)

Volume 9 (1977): Issue 2 (June 1977)

Volume 9 (1977): Issue 1 (April 1977)

Volume 8 (1976): Issue 7 (October 1976)

Volume 8 (1976): Issue 6 (June 1976)

Volume 8 (1976): Issue 5 (March 1976)

Volume 8 (1975): Issue 4 (December 1975)

Volume 8 (1975): Issue 3 (August 1975)

Volume 8 (1975): Issue 2 (May 1975)

Volume 8 (1975): Issue 1 (January 1975)

Volume 7 (1974): Issue 5 (September 1974)

Volume 7 (1974): Issue 4 (April 1974)

Volume 7 (1973): Issue 3 (November 1973)

Volume 7 (1973): Issue 2 (June 1973)

Volume 7 (1973): Issue 1 (January 1973)

Volume 6 (1972): Issue 5 (October 1972)

Volume 6 (1972): Issue 4 (August 1972)

Volume 6 (1972): Issue 3 (March 1972)

Volume 6 (1971): Issue 2 (September 1971)

Volume 6 (1971): Issue 1 (July 1971)

Volume 5 (1970): Issue 6 (December 1970)

Volume 5 (1970): Issue 5 (November 1970)

Volume 5 (1970): Issue 4 (August 1970)

Volume 5 (1969): Issue 3 (December 1969)

Volume 5 (1969): Issue 2 (August 1969)

Volume 5 (1969): Issue 1 (June 1969)

Volume 4 (1968): Issue 7 (December 1968)

Volume 4 (1968): Issue 6 (November 1968)

Volume 4 (1968): Issue 5 (July 1968)

Volume 4 (1968): Issue 4 (May 1968)

Volume 4 (1968): Issue 3 (February 1968)

Volume 4 (1967): Issue 2 (October 1967)

Volume 4 (1967): Issue 1 (August 1967)

Volume 3 (1966): Issue 9 (December 1966)

Volume 3 (1966): Issue 8 (December 1966)

Volume 3 (1966): Issue 7 (November 1966)

Volume 3 (1966): Issue 6 (September 1966)

Volume 3 (1966): Issue 5 (May 1966)

Volume 3 (1965): Issue 4 (October 1965)

Volume 3 (1965): Issue 3 (August 1965)

Volume 3 (1965): Issue 2 (May 1965)

Volume 3 (1965): Issue 1 (April 1965)

Volume 2 (1964): Issue 7 (November 1964)

Volume 2 (1964): Issue 6 (October 1964)

Volume 2 (1964): Issue 5 (May 1964)

Volume 2 (1964): Issue 4 (February 1964)

Volume 2 (1963): Issue 3 (October 1963)

Volume 2 (1963): Issue 2 (June 1963)

Volume 2 (1963): Issue 1 (March 1963)

Volume 1 (1962): Issue 10 (December 1962)

Volume 1 (1962): Issue 9 (December 1962)

Volume 1 (1962): Issue 8 (November 1962)

Volume 1 (1962): Issue 7 (November 1962)

Volume 1 (1962): Issue 6 (July 1962)

Volume 1 (1962): Issue 5 (February 1962)

Volume 1 (1961): Issue 4 (November 1961)

Volume 1 (1961): Issue 3 (August 1961)

Volume 1 (1961): Issue 2 (May 1961)

Volume 1 (1961): Issue 1 (January 1961)

Journal Details
Format
Journal
eISSN
2719-9509
First Published
01 Jan 1992
Publication timeframe
4 times per year
Languages
English

Search

Volume 26 (2015): Issue 7 (September 2015)

Journal Details
Format
Journal
eISSN
2719-9509
First Published
01 Jan 1992
Publication timeframe
4 times per year
Languages
English

Search

0 Articles
Open Access

Editors’ Note

Published Online: 20 Oct 2015
Page range: 297 - 297

Abstract

Open Access

Implications of Evolving Medical Science for Proof of Lung Cancer Causation

Published Online: 20 Oct 2015
Page range: 298 - 311

Abstract

Summary

Causal determination in cases of diseases involving multiple risk factors and long development time poses formidable challenges to judges and juries. Numerous scientific, medical and legal questions are involved. For example, is the mere presence of a factor known to be associated with elevated disease risk sufficient for a causal determination? If not, what level of exposure should be deemed sufficient, and how can that exposure be measured with adequate confidence over an extended period? In the presence of two or more factors associated with elevated disease risk, how can causation be demonstrated and apportioned among these factors, particularly when the potential effects of their interaction are unknown? With increasing knowledge of the molecular and genetic changes involved in disease development, what level of comprehension and proof is sufficient to implicate a specific risk factor in the complex causal mechanism of an individual’s disease? Lung cancer, notwithstanding its strong association with cigarette smoking, represents a group of diseases associated with both a variety of risk factors and relatively long development time. Both the published scientific literature and current clinical practice for the treatment of lung cancer, particularly lung adenocarcinoma, reflect the rapid changes that have occurred in this field over the past decade. These medical advances, in addition to promising better prognosis for some lung cancer patients, have implications for the proof of lung cancer causation in litigation in which plaintiffs contend that tobacco smoke exposure caused their disease. This is particularly true in cases arising in many European countries and other jurisdictions in which little or no histological or cytological information has been produced by plaintiffs. This paper examines the rapidly evolving science underpinning lung cancer diagnosis and treatment and its forensic implications. [Beitr. Tabakforsch. Int. 26 (2015) 298-311]

Open Access

The Pore Size Distribution of Naturally Porous Cigarette Paper and its Relation to Permeability and Diffusion Capacity

Published Online: 20 Oct 2015
Page range: 312 - 319

Abstract

Summary

The pore size distribution of cigarette paper determines its air permeability and diffusion capacity and thereby has a significant influence on the gas exchange of a cigarette through the cigarette paper during smoking and during smouldering. For the design of cigarettes and in particular of cigarette papers it is important to understand how the pore size distribution of the cigarette paper is affected by the paper composition and paper properties and how it influences air permeability and diffusion capacity.

It was the aim of this study to investigate how the composition of the cigarette paper such as filler content, fibre type and burn additive content qualitatively influenced the pore size distribution and how the pore size distribution and, in particular, which pore size range is correlated with air permeability and diffusion capacity, respectively. To this end eight naturally porous cigarette papers were selected which differed in air permeability, diffusion capacity, fibre type, filler content and burn additive content. The pore size distributions of these papers were measured by mercury porosimetry before and after the papers had been heated to 230 °C for 30 min. The pore size distributions were investigated for qualitative differences when air permeability, fibre type and filler content of the cigarette paper are modified. Furthermore by appropriate weighting of the pore size distributions optimal correlations between a weighted pore volume and air permeability or diffusion capacity were determined. The results show a good correlation with correlation coefficients greater than 0.9 for air permeability as well as for diffusion capacity. The results indicate that large pores are better correlated with changes in air permeability, while small pores are more strongly correlated with changes in diffusion capacity and support previous theoretical results obtained from flow and diffusion models. They also demonstrate the tight relationship between pore size distribution, air permeability and diffusion capacity, which makes the pore size distribution a tool to further optimize cigarette papers, for example, with respect to carbon monoxide yields in the smoke of a cigarette. [Beitr. Tabakforsch. Int 26 (2015) 312-319]

Open Access

Prediction Model for Cigarette Yields Derived from Data Obtained under Two Different Machine Smoking Regimes

Published Online: 20 Oct 2015
Page range: 320 - 333

Abstract

Summary

“Tar”, nicotine and carbon monoxide (TNCO) cigarette yields determined under different smoking regimes, with and without ventilation blocking, are linearly related to the difference Δt between the smouldering time (cigarette combustion with no puffing) and the smoking time (cigarette combustion with puffing). Δt forms then the basis of yield predictions. The smoulder rate determination used in the calculation of Δt can be difficult for low ignition propensity cigarettes which present some tendency for selfextinguishment. This issue was overcome in a novel testing scheme involving the determination of number of puffs and smoking times under two different smoking regimes and inputting this data into a cigarette burning model. This enabled us to characterise the burning process and provided an extensive set of information such as the mean smoulder rate between puffs or the mass of tobacco burnt during puffs regardless of the smoking regime applied.

Good correlations were observed between the mass of tobacco burnt during puffs and TNCO or B[a]P yields. Correlations provide a way to link yields from one smoking regime to another and confirm that yields determined from one regime are sufficient to establish the relationships between yields and smoking intensity. It was concluded that smoke yields for arbitrary smoking regimes can potentially be predicted by determining the puff numbers and smoking times from two different smoking regimes and the smoke yields from only one regime. This testing scheme allows a comprehensive characterisation of a cigarette at reduced cost. [Beitr. Tabakforsch. Int. 26 (2015) 320-333]

Keywords

  • Smoking regime
  • cigarette emissions
  • tobacco products
  • regulation
Open Access

Evaluation of the Content of Free Amino Acids in Tobacco by a New Liquid Chromatography-Tandem Mass Spectrometry Technique

Published Online: 20 Oct 2015
Page range: 334 - 343

Abstract

Summary

The present study describes a reliable technique for the analysis of free amino acids in tobacco leaf. The levels of amino acids in tobacco are important since they are related to both tobacco quality and the potential generation in cigarette smoke of toxicants having amino acid precursors. Other techniques used in the past for amino acid analysis have various shortcomings that were avoided in the present method. The new method uses HPLC separation and a tandem mass spectrometer for detection with no derivatization step as sample preparation. The separation has been obtained using ion pair HPLC on a reversed phase column that offers excellent chromatographic resolution. The MS/MS detection procedure offers very good sensitivity and positive identification of the analytes. The procedure was fully validated and can be used for the analysis of 24 amino acids. It was applied for the quantitation of amino acids from 16 types of tobacco including flue-cured and Burley, some domestic and some not grown in the USA, two types of Oriental tobacco, and from tobacco of a 3R4F Kentucky reference and a common commercial cigarette. It was shown that the analysis provides useful information regarding the amino acid level variation between tobacco types, between tobacco stalk positions, and between the growing locations of different tobaccos. [Beitr. Tabakforsch. Int. 26 (2015) 334-343]

Keywords

  • Amino acids
  • tobacco
  • LC-MS/MS
  • HPLC-fluorescence
0 Articles
Open Access

Editors’ Note

Published Online: 20 Oct 2015
Page range: 297 - 297

Abstract

Open Access

Implications of Evolving Medical Science for Proof of Lung Cancer Causation

Published Online: 20 Oct 2015
Page range: 298 - 311

Abstract

Summary

Causal determination in cases of diseases involving multiple risk factors and long development time poses formidable challenges to judges and juries. Numerous scientific, medical and legal questions are involved. For example, is the mere presence of a factor known to be associated with elevated disease risk sufficient for a causal determination? If not, what level of exposure should be deemed sufficient, and how can that exposure be measured with adequate confidence over an extended period? In the presence of two or more factors associated with elevated disease risk, how can causation be demonstrated and apportioned among these factors, particularly when the potential effects of their interaction are unknown? With increasing knowledge of the molecular and genetic changes involved in disease development, what level of comprehension and proof is sufficient to implicate a specific risk factor in the complex causal mechanism of an individual’s disease? Lung cancer, notwithstanding its strong association with cigarette smoking, represents a group of diseases associated with both a variety of risk factors and relatively long development time. Both the published scientific literature and current clinical practice for the treatment of lung cancer, particularly lung adenocarcinoma, reflect the rapid changes that have occurred in this field over the past decade. These medical advances, in addition to promising better prognosis for some lung cancer patients, have implications for the proof of lung cancer causation in litigation in which plaintiffs contend that tobacco smoke exposure caused their disease. This is particularly true in cases arising in many European countries and other jurisdictions in which little or no histological or cytological information has been produced by plaintiffs. This paper examines the rapidly evolving science underpinning lung cancer diagnosis and treatment and its forensic implications. [Beitr. Tabakforsch. Int. 26 (2015) 298-311]

Open Access

The Pore Size Distribution of Naturally Porous Cigarette Paper and its Relation to Permeability and Diffusion Capacity

Published Online: 20 Oct 2015
Page range: 312 - 319

Abstract

Summary

The pore size distribution of cigarette paper determines its air permeability and diffusion capacity and thereby has a significant influence on the gas exchange of a cigarette through the cigarette paper during smoking and during smouldering. For the design of cigarettes and in particular of cigarette papers it is important to understand how the pore size distribution of the cigarette paper is affected by the paper composition and paper properties and how it influences air permeability and diffusion capacity.

It was the aim of this study to investigate how the composition of the cigarette paper such as filler content, fibre type and burn additive content qualitatively influenced the pore size distribution and how the pore size distribution and, in particular, which pore size range is correlated with air permeability and diffusion capacity, respectively. To this end eight naturally porous cigarette papers were selected which differed in air permeability, diffusion capacity, fibre type, filler content and burn additive content. The pore size distributions of these papers were measured by mercury porosimetry before and after the papers had been heated to 230 °C for 30 min. The pore size distributions were investigated for qualitative differences when air permeability, fibre type and filler content of the cigarette paper are modified. Furthermore by appropriate weighting of the pore size distributions optimal correlations between a weighted pore volume and air permeability or diffusion capacity were determined. The results show a good correlation with correlation coefficients greater than 0.9 for air permeability as well as for diffusion capacity. The results indicate that large pores are better correlated with changes in air permeability, while small pores are more strongly correlated with changes in diffusion capacity and support previous theoretical results obtained from flow and diffusion models. They also demonstrate the tight relationship between pore size distribution, air permeability and diffusion capacity, which makes the pore size distribution a tool to further optimize cigarette papers, for example, with respect to carbon monoxide yields in the smoke of a cigarette. [Beitr. Tabakforsch. Int 26 (2015) 312-319]

Open Access

Prediction Model for Cigarette Yields Derived from Data Obtained under Two Different Machine Smoking Regimes

Published Online: 20 Oct 2015
Page range: 320 - 333

Abstract

Summary

“Tar”, nicotine and carbon monoxide (TNCO) cigarette yields determined under different smoking regimes, with and without ventilation blocking, are linearly related to the difference Δt between the smouldering time (cigarette combustion with no puffing) and the smoking time (cigarette combustion with puffing). Δt forms then the basis of yield predictions. The smoulder rate determination used in the calculation of Δt can be difficult for low ignition propensity cigarettes which present some tendency for selfextinguishment. This issue was overcome in a novel testing scheme involving the determination of number of puffs and smoking times under two different smoking regimes and inputting this data into a cigarette burning model. This enabled us to characterise the burning process and provided an extensive set of information such as the mean smoulder rate between puffs or the mass of tobacco burnt during puffs regardless of the smoking regime applied.

Good correlations were observed between the mass of tobacco burnt during puffs and TNCO or B[a]P yields. Correlations provide a way to link yields from one smoking regime to another and confirm that yields determined from one regime are sufficient to establish the relationships between yields and smoking intensity. It was concluded that smoke yields for arbitrary smoking regimes can potentially be predicted by determining the puff numbers and smoking times from two different smoking regimes and the smoke yields from only one regime. This testing scheme allows a comprehensive characterisation of a cigarette at reduced cost. [Beitr. Tabakforsch. Int. 26 (2015) 320-333]

Keywords

  • Smoking regime
  • cigarette emissions
  • tobacco products
  • regulation
Open Access

Evaluation of the Content of Free Amino Acids in Tobacco by a New Liquid Chromatography-Tandem Mass Spectrometry Technique

Published Online: 20 Oct 2015
Page range: 334 - 343

Abstract

Summary

The present study describes a reliable technique for the analysis of free amino acids in tobacco leaf. The levels of amino acids in tobacco are important since they are related to both tobacco quality and the potential generation in cigarette smoke of toxicants having amino acid precursors. Other techniques used in the past for amino acid analysis have various shortcomings that were avoided in the present method. The new method uses HPLC separation and a tandem mass spectrometer for detection with no derivatization step as sample preparation. The separation has been obtained using ion pair HPLC on a reversed phase column that offers excellent chromatographic resolution. The MS/MS detection procedure offers very good sensitivity and positive identification of the analytes. The procedure was fully validated and can be used for the analysis of 24 amino acids. It was applied for the quantitation of amino acids from 16 types of tobacco including flue-cured and Burley, some domestic and some not grown in the USA, two types of Oriental tobacco, and from tobacco of a 3R4F Kentucky reference and a common commercial cigarette. It was shown that the analysis provides useful information regarding the amino acid level variation between tobacco types, between tobacco stalk positions, and between the growing locations of different tobaccos. [Beitr. Tabakforsch. Int. 26 (2015) 334-343]

Keywords

  • Amino acids
  • tobacco
  • LC-MS/MS
  • HPLC-fluorescence