The aim of the study was to verify the accuracy of calculations of dose distributions for electron beams performed using the electron Monte Carlo (eMC) v.10.0.28 algorithm implemented in the Eclipse treatment planning system (Varian Medical Systems). Implementation of the objective of the study was carried out in two stages. In the first stage the influence of several parameters defined by the user on the calculation accuracy was assessed. After selecting a set of parameters for which the best results were obtained a series of tests were carried. The tests were carried out in accordance with the recommendations of the Polish Society of Medical Physics (PSMP). The calculation and measurement of dose rate under reference conditions for semi quadratic and shaped fields were compared by individual cut-outs. We compared the calculated and measured percent depth doses, profiles and output factors for beams with an energy of 6, 9, 12, 15 and 18 MeV, for semi quadratic fields and for three different SSDs 100, 110, and 120 cm. All tests were carried out for beams generated in the Varian 2300CD Clinac linear accelerator. The results obtained during the first stage of the study demonstrated that the highest compliance between the calculations and measurements were obtained for the mean statistical uncertainty equal to 1, and the parameter responsible for smoothing the statistical noise defined as medium. Comparisons were made showing similar compliance calculations and measurements for the calculation grid of 0.1 cm and 0.25 cm and therefore the remaining part of the study was carried out for these two grids. In stage 2 it was demonstrated that the use of calculation grid of 0.1 cm allows for greater compliance of calculations and measurements. For energy 12, 15 and 18 MeV discrepancies between calculations and measurements, in most cases, did not exceed the PSMP action levels. The biggest differences between measurements and calculations were obtained for 6 MeV energy, for smallest fields and large SSD distances. Despite these discrepancies between calculations the model was adopted for clinical use.
High dose rate (HDR) brachytherapy commonly employs a 192Ir encapsulated source to deliver high dose to the malignant tissues. Calibrations of brachytherapy sources are performed by the manufacturer using a well-type chamber or by in-air measurement using a cylindrical ionization chamber. Calibration using the latter involves measurements to be carried out at several distances and room scatter can also be determined. The aim of the present study is to estimate the scatter contribution from the walls, floor and various materials in the room in order to determine the reference air kerma rate of an 192Ir HDR brachytherapy source by in-air measurements and also to evaluate the error in the setup distance between the source centre and chamber centre. Air kerma measurements were performed at multiple distances from 10 cm to 40 cm between the source and chamber. The room scatter correction factor was determined using the iterative technique. The distance error of −0.094 cm and −0.112 cm was observed for chamber with and without buildup cap respectively. The scatter component ranges from 0.3% to 5.4% for the chamber with buildup cap and 0.3% to 4.6% without buildup cap for distances between 10 to 40 cm respectively. Since the average of the results at multiple distances is considered to obtain the actual air kerma rate of the HDR source, the seven distance method and iterative technique are very effective in determining the scatter contribution and the error in the distance measurements.
There are many situations in radiotherapy where multiple treatment plans need to be compared for selection of an optimal plan. In this study we performed the radiobiological method of plan evaluation to verify the treatment plan comparison procedure of our clinical practice. We estimated and correlated various radiobiological dose indices with physical dose metrics for a total of 30 patients representing typical cases of head and neck, prostate and brain tumors. Three sets of plans along with a clinically approved plan (final plan) treated by either Intensity Modulated Radiation Therapy (IMRT) or Rapid Arc (RA) techniques were considered. The study yielded improved target coverage for final plans, however, no appreciable differences in doses and the complication probabilities of organs at risk were noticed. Even though all four plans showed adequate dose distributions, from dosimetric point of view, the final plan had more acceptable dose distribution. The estimated biological outcome and dose volume histogram data showed least differences between plans for IMRT when compared to RA. Our retrospective study based on 120 plans, validated the radiobiological method of plan evaluation. The tumor cure or normal tissue complication probabilities were found to be correlated with the corresponding physical dose indices.
In dynamic cardiac PET FDG studies the assessment of myocardial metabolic rate of glucose (MMRG) requires the knowledge of the blood input function (IF). IF can be obtained by manual or automatic blood sampling and cross calibrated with PET. These procedures are cumbersome, invasive and generate uncertainties. The IF is contaminated by spillover of radioactivity from the adjacent myocardium and this could cause important error in the estimated MMRG. In this study, we show that the IF can be extracted from the images in a rat heart study with 18F-fluorodeoxyglucose (18F-FDG) by means of Independent Component Analysis (ICA) based on Bayesian theory and Markov Chain Monte Carlo (MCMC) sampling method (BICA). Images of the heart from rats were acquired with the Sherbrooke small animal PET scanner. A region of interest (ROI) was drawn around the rat image and decomposed into blood and tissue using BICA. The Statistical study showed that there is a significant difference (p < 0.05) between MMRG obtained with IF extracted by BICA with respect to IF extracted from measured images corrupted with spillover.
The aim of the study was to verify the accuracy of calculations of dose distributions for electron beams performed using the electron Monte Carlo (eMC) v.10.0.28 algorithm implemented in the Eclipse treatment planning system (Varian Medical Systems). Implementation of the objective of the study was carried out in two stages. In the first stage the influence of several parameters defined by the user on the calculation accuracy was assessed. After selecting a set of parameters for which the best results were obtained a series of tests were carried. The tests were carried out in accordance with the recommendations of the Polish Society of Medical Physics (PSMP). The calculation and measurement of dose rate under reference conditions for semi quadratic and shaped fields were compared by individual cut-outs. We compared the calculated and measured percent depth doses, profiles and output factors for beams with an energy of 6, 9, 12, 15 and 18 MeV, for semi quadratic fields and for three different SSDs 100, 110, and 120 cm. All tests were carried out for beams generated in the Varian 2300CD Clinac linear accelerator. The results obtained during the first stage of the study demonstrated that the highest compliance between the calculations and measurements were obtained for the mean statistical uncertainty equal to 1, and the parameter responsible for smoothing the statistical noise defined as medium. Comparisons were made showing similar compliance calculations and measurements for the calculation grid of 0.1 cm and 0.25 cm and therefore the remaining part of the study was carried out for these two grids. In stage 2 it was demonstrated that the use of calculation grid of 0.1 cm allows for greater compliance of calculations and measurements. For energy 12, 15 and 18 MeV discrepancies between calculations and measurements, in most cases, did not exceed the PSMP action levels. The biggest differences between measurements and calculations were obtained for 6 MeV energy, for smallest fields and large SSD distances. Despite these discrepancies between calculations the model was adopted for clinical use.
High dose rate (HDR) brachytherapy commonly employs a 192Ir encapsulated source to deliver high dose to the malignant tissues. Calibrations of brachytherapy sources are performed by the manufacturer using a well-type chamber or by in-air measurement using a cylindrical ionization chamber. Calibration using the latter involves measurements to be carried out at several distances and room scatter can also be determined. The aim of the present study is to estimate the scatter contribution from the walls, floor and various materials in the room in order to determine the reference air kerma rate of an 192Ir HDR brachytherapy source by in-air measurements and also to evaluate the error in the setup distance between the source centre and chamber centre. Air kerma measurements were performed at multiple distances from 10 cm to 40 cm between the source and chamber. The room scatter correction factor was determined using the iterative technique. The distance error of −0.094 cm and −0.112 cm was observed for chamber with and without buildup cap respectively. The scatter component ranges from 0.3% to 5.4% for the chamber with buildup cap and 0.3% to 4.6% without buildup cap for distances between 10 to 40 cm respectively. Since the average of the results at multiple distances is considered to obtain the actual air kerma rate of the HDR source, the seven distance method and iterative technique are very effective in determining the scatter contribution and the error in the distance measurements.
There are many situations in radiotherapy where multiple treatment plans need to be compared for selection of an optimal plan. In this study we performed the radiobiological method of plan evaluation to verify the treatment plan comparison procedure of our clinical practice. We estimated and correlated various radiobiological dose indices with physical dose metrics for a total of 30 patients representing typical cases of head and neck, prostate and brain tumors. Three sets of plans along with a clinically approved plan (final plan) treated by either Intensity Modulated Radiation Therapy (IMRT) or Rapid Arc (RA) techniques were considered. The study yielded improved target coverage for final plans, however, no appreciable differences in doses and the complication probabilities of organs at risk were noticed. Even though all four plans showed adequate dose distributions, from dosimetric point of view, the final plan had more acceptable dose distribution. The estimated biological outcome and dose volume histogram data showed least differences between plans for IMRT when compared to RA. Our retrospective study based on 120 plans, validated the radiobiological method of plan evaluation. The tumor cure or normal tissue complication probabilities were found to be correlated with the corresponding physical dose indices.
In dynamic cardiac PET FDG studies the assessment of myocardial metabolic rate of glucose (MMRG) requires the knowledge of the blood input function (IF). IF can be obtained by manual or automatic blood sampling and cross calibrated with PET. These procedures are cumbersome, invasive and generate uncertainties. The IF is contaminated by spillover of radioactivity from the adjacent myocardium and this could cause important error in the estimated MMRG. In this study, we show that the IF can be extracted from the images in a rat heart study with 18F-fluorodeoxyglucose (18F-FDG) by means of Independent Component Analysis (ICA) based on Bayesian theory and Markov Chain Monte Carlo (MCMC) sampling method (BICA). Images of the heart from rats were acquired with the Sherbrooke small animal PET scanner. A region of interest (ROI) was drawn around the rat image and decomposed into blood and tissue using BICA. The Statistical study showed that there is a significant difference (p < 0.05) between MMRG obtained with IF extracted by BICA with respect to IF extracted from measured images corrupted with spillover.