Magazine et Edition

AHEAD OF PRINT

Volume 44 (2022): Edition 3 (September 2022)

Volume 44 (2022): Edition 2 (June 2022)

Volume 44 (2022): Edition 1 (March 2022)

Volume 43 (2021): Edition 4 (December 2021)

Volume 43 (2021): Edition 3 (September 2021)

Volume 43 (2021): Edition 2 (June 2021)

Volume 43 (2021): Edition s1 (December 2021)
Special Edition: Underground Infrastructure of Urban Areas

Volume 43 (2021): Edition 1 (April 2021)

Volume 42 (2020): Edition 4 (December 2020)

Volume 42 (2020): Edition 3 (September 2020)

Volume 42 (2020): Edition 2 (June 2020)

Volume 42 (2020): Edition 1 (April 2020)

Volume 41 (2019): Edition 4 (December 2019)

Volume 41 (2019): Edition 3 (September 2019)

Volume 41 (2019): Edition 2 (June 2019)

Volume 41 (2019): Edition 1 (April 2019)

Volume 40 (2018): Edition 4 (December 2018)

Volume 40 (2018): Edition 3 (November 2018)

Volume 40 (2018): Edition 2 (October 2018)

Volume 40 (2018): Edition 1 (July 2018)

Volume 39 (2017): Edition 4 (December 2017)

Volume 39 (2017): Edition 3 (September 2017)

Volume 39 (2017): Edition 2 (June 2017)

Volume 39 (2017): Edition 1 (March 2017)

Volume 38 (2016): Edition 4 (December 2016)

Volume 38 (2016): Edition 3 (September 2016)

Volume 38 (2016): Edition 2 (June 2016)

Volume 38 (2016): Edition 1 (March 2016)

Volume 37 (2015): Edition 4 (December 2015)

Volume 37 (2015): Edition 3 (September 2015)

Volume 37 (2015): Edition 2 (June 2015)

Volume 37 (2015): Edition 1 (March 2015)

Volume 36 (2014): Edition 4 (December 2014)

Volume 36 (2014): Edition 3 (September 2014)

Volume 36 (2014): Edition 2 (June 2014)

Volume 36 (2014): Edition 1 (March 2014)

Volume 35 (2013): Edition 4 (December 2013)

Volume 35 (2013): Edition 3 (September 2013)

Volume 35 (2013): Edition 2 (June 2013)

Volume 35 (2013): Edition 1 (March 2013)

Volume 34 (2012): Edition 4 (December 2012)

Volume 34 (2012): Edition 3 (September 2012)

Volume 34 (2012): Edition 2 (June 2012)

Volume 34 (2012): Edition 1 (March 2012)

Détails du magazine
Format
Magazine
eISSN
2083-831X
Première publication
09 Nov 2012
Période de publication
4 fois par an
Langues
Anglais

Chercher

Volume 40 (2018): Edition 2 (October 2018)

Détails du magazine
Format
Magazine
eISSN
2083-831X
Première publication
09 Nov 2012
Période de publication
4 fois par an
Langues
Anglais

Chercher

9 Articles

Research Article

Accès libre

Stress–dilatancy relationship for railway ballast

Publié en ligne: 03 Oct 2018
Pages: 79 - 85

Résumé

Abstract

Knowledge of the mechanical behaviour of ballast is very important for designing a railway track, especially for high-speed lines. The monotonic drained triaxial tests of scaled and fouled ballast presented in literature were analysed using the Frictional State Theory. The stress–plastic dilatancy relationship shows that four characteristic stages of shearing may be specified. The influence of stress level and water content may be quantified by the use of the Frictional State Theory.

Mots clés

  • railway ballast
  • critical state
  • frictional state
  • dilatancy
Accès libre

On consistent nonlinear analysis of soil–structure interaction problems

Publié en ligne: 03 Oct 2018
Pages: 86 - 95

Résumé

Abstract

Nonlinear soil–linear structure computational strategy is commonly accepted in the community of geotechnical engineers using advanced finite element software for solving complex soil–structure interaction problems. However, further design procedure of the structural elements is carried out using increased values of the computed elastic stress resultants. It is absolutely not clear whether this method is conservative and, therefore, whether safe or not. To tackle this problem, a fully consistent nonlinear analysis of a deep excavation protected by the diaphragm wall is analysed here. The subsoil is modelled using the Hardening Soil model, while reinforced concrete is modelled using the modified Lee–Fenves model enhanced by the Eurocode 2 (EC2)-compatible creep module, developed by the author. It is shown that the commonly used nonlinear soil–linear structure computational strategy may yield insufficient amount of reinforcement from the ultimate limit state (ULS) and serviceability limit state (SLS) points of view. A consistent and conservative method of combining fully nonlinear analysis and the rules imposed by the EC2 is proposed.

Mots clés

  • soil–structure interaction
  • constitutive modelling
  • deep excavations
  • finite elements
Accès libre

Influence of Soil Fabrics and Stress State on the Undrained Instability of Overconsolidated Binary Granular Assemblies

Publié en ligne: 03 Oct 2018
Pages: 96 - 116

Résumé

Abstract

The instability of saturated granular soils in field conditions generates drastic collapse in terms of runoff deformation because of its failing to sustain naturally applied loading conditions such as earthquakes, wave actions and vibrations. The objective of this laboratory investigation is to study the effects of the depositional methods, overconsolidation ratio (OCR) and confining pressure on the undrained instability shear strength of medium dense (Dr = 52%) sand–silt mixtures under static loading conditions. For this purpose, a series of undrained monotonic triaxial tests were carried out on reconstituted saturated silty sand samples with fines content ranging from 0% to 40%. Three confining pressures were used (P’c = 100, 200 and 300 kPa) in this research. The sand–silt mixture samples were prepared using two depositional methods, dry funnel pluviation (DFP) and wet deposition (WD), and subjected to two OCRs (1 and 2). The obtained instability lines and friction angles indicate that the funnel pluviated samples exhibit strain hardening compared to the wet deposited samples and that normally consolidated and overconsolidated wet deposited clean sandy samples were very sensitive to static liquefaction. The test results also indicate that the instability friction angle increases with the increase in the OCR expressing soil dilative character tendency increase. The instability friction angle decreases with the increase in the fines content for DFP and the inverse tendency was observed in the case of WD.

Mots clés

  • Instability lines
  • Dry funnel pluviation
  • Wet deposition
  • Overconsolidation ratio
  • Sand-silt mixtures
Accès libre

Use of functional cluster analysis of CPTU data for assessment of a subsoil rigidity

Publié en ligne: 03 Oct 2018
Pages: 117 - 124

Résumé

Abstract

This paper shows an example of the grouping of piezocone penetration test (CPTU) characteristics using functional data analysis, together with the results of clustering, in the form of a subsoil rigidity model. The subsoil rigidity model was constructed based on layer separation using the proposed method, as well as the k-means method. In the construction of the subsoil rigidity model, the constrained modulus M was applied. These moduli were determined from empirical relationships for overconsolidated and normally consolidated soils from Poland based on cone tip resistance.

Mots clés

  • CPTU
  • cluster analysis
  • functional data
  • rigidity model
Accès libre

Interpretation of shear modulus degradation tests

Publié en ligne: 21 Sep 2018
Pages: 125 - 132

Résumé

Abstract

The problem is a continuation of the research conducted at the University of Warmia and Mazury in Olsztyn, Institute of Building Engineering. It concerns the development of methods for the interpretation of the shear modulus measurements based on the tests conducted on a torsional shear (TS) apparatus. The issue has significant importance in determining the deformation parameters, essential to perform numerical simulations of the interaction between a geotechnical structure and the subsoil. The purpose of this study was to conduct a comparative analysis of the various methods of interpretation of research results based on direct and reverse analysis, as well as automated classification of the first cycle of the relationship between the shear stress and the shear strain components obtained from the TS test. The methodology for verification of the presented interpretative methods consists in carrying out a series of laboratory tests on non-cohesive and cohesive samples of different granulation and state parameters. The course of the research includes the following steps: elaboration of the granulometric composition of several samples of soil, determination of soil index properties and execution of TS tests. Various methods of interpretation of obtained results were taken into account, in addition to conducting a comparative analysis. The study used a non-standard interpretation approach consisting of analysing one-fourth of the hysteresis loop of the first load–unload cycle of the tested samples. The obtained results confirmed the hypothesis that it is possible to estimate the degradation value of the shear modulus based on a part of the TS test results carried out under quasi-monotonic load conditions. The proposed methods of interpreting test results have confirmed their high usefulness, which is devoid of the uncertainty associated with standardised resonant column/TS testing.

Mots clés

  • torsional shear
  • back analysis
  • cluster analysis
  • shear modulus
  • small strains
Accès libre

Remarks On The Sources Of Error In The Modelling Of Lunar Geotechnical Structures

Publié en ligne: 11 Sep 2018
Pages: 133 - 139

Résumé

Abstract

Scale modelling should be a very useful strategy for the design of lunar structures. Preventing structural damages in the lunar environment is crucial and scale models are helpful to achieve this aim. The size of these models must be scaled to take into account the different gravitational levels. Since the lunar gravity acceleration is about one-sixth of the terrestrial one, it follows that the models on Earth will be very smaller than the prototype to be realized on the Moon. This strategy will represent an opportunity for engineers working on lunar structure design, provided that the errors, both computational and experimental, related to the change of scale are quantified, allowing reliable extension of the physical scale modelling results to the prototype. In this work, a three-dimensional finite element analysis of walls retaining lunar regolith backfill is described and discussed, in order to provide preliminary results, which can guide a future experimental investigation based on physical scale-modelling. In particular, computational errors related to the scale effects are assessed, with respect to a virtual prototype of the lunar geotechnical structure, and compared with errors from other sources of discrepancy, like the adopted constitutive model, the variability of the geotechnical parameters and the calculation section used in the 3D analysis. The results seem to suggest the soundness of this strategy of modelling and are likely to encourage new research, both numerical and experimental, supporting the structure serviceability assessment.

Mots clés

  • lunar geotechnical structures
  • physical scale-modelling
  • lunar regolith
  • numerical simulations
  • retaining wall
Accès libre

Application of Genetic Algorithms for the Estimation of Hydraulic Conductivity

Publié en ligne: 04 Aug 2018
Pages: 140 - 146

Résumé

Abstract

In the study described here model calibration was performed employing the inverse analysis using genetic algorithms (GA). The objective of analysis is to determine value of the coefficient of hydraulic conductivity, k. The commonly used method for the determination of coefficient of hydraulic conductivity based on Terzaghi consolidation leads to an underestimation of the value of k as the Terzaghi model does not take into account the deformation of soil skeleton. Here, an alternative methodology based on genetic algorithms is presented for the determination of the basic parameters of Biot consolidation model. It has been demonstrated that genetic algorithms are a highly effective tool enabling automatic calibration based on simple rules. The values of the coefficient of hydraulic conductivity obtained with GA are of at least one order smaller than values obtained with the Terzaghi model.

Mots clés

  • genetic algorithms
  • hydraulic conductivity
  • Biot consolidation model
Accès libre

Influence of Soil Deformation Caused by Mining on Sewage Pipelines Built Using The Pipe Jacking Method

Publié en ligne: 04 Aug 2018
Pages: 147 - 153

Résumé

Abstract

This paper discusses the issues associated with the influence of underground mining operations on sewage pipelines built using the pipe jacking method. At present, to build sewage pipelines, especially in urban areas and deep embedment, trenchless technologies are employed. Mainly in these technologies, pipes are jacked into a bored tunnel using hydraulic jacks. These methods are also applied in mining areas.

The aim of this paper is to analyse the influence of ground deformation, caused by mining operations, on sewage pipelines built using the pipe jacking method. The type of pipelines discussed here is built with butted sections, which cannot compensate the influences of mining operations in pipe joints if horizontal compression occurs in the near-surface layer of soil. Pipelines embedded in trenches in the mining areas are secured against the influence of mining operations with expansion joints, which compensate for ground deformation. Hence, in the analysis of the influence of soil deformation caused by mining on sewage pipelines built using jacking method, special attention was paid to the performance of pipe joints. Pipelines of the type are subjected to additional loads and displacements, caused by soil deformations like horizontal strains, horizontal soil displacements and surface curvatures. We propose a way to consider the influence of mining operations on sewage pipelines built using the pipe jacking method.

Mots clés

  • sewage pipeline
  • pipe jacking method
  • mining area
Accès libre

Mixture of Crushed- Stone Aggregate as Material For Substructure Layers

Publié en ligne: 04 Aug 2018
Pages: 154 - 162

Résumé

Abstract

One of the most important elements of road construction is its substructure, which constitutes the base on which the next layers of road are placed. Mixture of crushed-stone aggregate is very often used as material for substructure. The most frequently used type of aggregate is magma rocks, due to its good physical-mechanical properties. However, it is not always available, so it is substituted by sandstone or even concrete rubble aggregates. The bearing ratio CBR is a parameter determining the suitability of a certain aggregate for road substructure. It is also one of the most popular quality tests of aggregate as it does not require complex apparatus. This paper analyses the results of physical and geotechnical tests with particular focus on CBR bearing ratio of crushed aggregates and their application as substructure for road construction. There has also been an attempt to find the correlation between CBR bearing ratio and other physical and geometrical properties.

Mots clés

  • mixture of crushed-stone aggregate
  • the California bearing ratio (CBR)
  • road substructure
9 Articles

Research Article

Accès libre

Stress–dilatancy relationship for railway ballast

Publié en ligne: 03 Oct 2018
Pages: 79 - 85

Résumé

Abstract

Knowledge of the mechanical behaviour of ballast is very important for designing a railway track, especially for high-speed lines. The monotonic drained triaxial tests of scaled and fouled ballast presented in literature were analysed using the Frictional State Theory. The stress–plastic dilatancy relationship shows that four characteristic stages of shearing may be specified. The influence of stress level and water content may be quantified by the use of the Frictional State Theory.

Mots clés

  • railway ballast
  • critical state
  • frictional state
  • dilatancy
Accès libre

On consistent nonlinear analysis of soil–structure interaction problems

Publié en ligne: 03 Oct 2018
Pages: 86 - 95

Résumé

Abstract

Nonlinear soil–linear structure computational strategy is commonly accepted in the community of geotechnical engineers using advanced finite element software for solving complex soil–structure interaction problems. However, further design procedure of the structural elements is carried out using increased values of the computed elastic stress resultants. It is absolutely not clear whether this method is conservative and, therefore, whether safe or not. To tackle this problem, a fully consistent nonlinear analysis of a deep excavation protected by the diaphragm wall is analysed here. The subsoil is modelled using the Hardening Soil model, while reinforced concrete is modelled using the modified Lee–Fenves model enhanced by the Eurocode 2 (EC2)-compatible creep module, developed by the author. It is shown that the commonly used nonlinear soil–linear structure computational strategy may yield insufficient amount of reinforcement from the ultimate limit state (ULS) and serviceability limit state (SLS) points of view. A consistent and conservative method of combining fully nonlinear analysis and the rules imposed by the EC2 is proposed.

Mots clés

  • soil–structure interaction
  • constitutive modelling
  • deep excavations
  • finite elements
Accès libre

Influence of Soil Fabrics and Stress State on the Undrained Instability of Overconsolidated Binary Granular Assemblies

Publié en ligne: 03 Oct 2018
Pages: 96 - 116

Résumé

Abstract

The instability of saturated granular soils in field conditions generates drastic collapse in terms of runoff deformation because of its failing to sustain naturally applied loading conditions such as earthquakes, wave actions and vibrations. The objective of this laboratory investigation is to study the effects of the depositional methods, overconsolidation ratio (OCR) and confining pressure on the undrained instability shear strength of medium dense (Dr = 52%) sand–silt mixtures under static loading conditions. For this purpose, a series of undrained monotonic triaxial tests were carried out on reconstituted saturated silty sand samples with fines content ranging from 0% to 40%. Three confining pressures were used (P’c = 100, 200 and 300 kPa) in this research. The sand–silt mixture samples were prepared using two depositional methods, dry funnel pluviation (DFP) and wet deposition (WD), and subjected to two OCRs (1 and 2). The obtained instability lines and friction angles indicate that the funnel pluviated samples exhibit strain hardening compared to the wet deposited samples and that normally consolidated and overconsolidated wet deposited clean sandy samples were very sensitive to static liquefaction. The test results also indicate that the instability friction angle increases with the increase in the OCR expressing soil dilative character tendency increase. The instability friction angle decreases with the increase in the fines content for DFP and the inverse tendency was observed in the case of WD.

Mots clés

  • Instability lines
  • Dry funnel pluviation
  • Wet deposition
  • Overconsolidation ratio
  • Sand-silt mixtures
Accès libre

Use of functional cluster analysis of CPTU data for assessment of a subsoil rigidity

Publié en ligne: 03 Oct 2018
Pages: 117 - 124

Résumé

Abstract

This paper shows an example of the grouping of piezocone penetration test (CPTU) characteristics using functional data analysis, together with the results of clustering, in the form of a subsoil rigidity model. The subsoil rigidity model was constructed based on layer separation using the proposed method, as well as the k-means method. In the construction of the subsoil rigidity model, the constrained modulus M was applied. These moduli were determined from empirical relationships for overconsolidated and normally consolidated soils from Poland based on cone tip resistance.

Mots clés

  • CPTU
  • cluster analysis
  • functional data
  • rigidity model
Accès libre

Interpretation of shear modulus degradation tests

Publié en ligne: 21 Sep 2018
Pages: 125 - 132

Résumé

Abstract

The problem is a continuation of the research conducted at the University of Warmia and Mazury in Olsztyn, Institute of Building Engineering. It concerns the development of methods for the interpretation of the shear modulus measurements based on the tests conducted on a torsional shear (TS) apparatus. The issue has significant importance in determining the deformation parameters, essential to perform numerical simulations of the interaction between a geotechnical structure and the subsoil. The purpose of this study was to conduct a comparative analysis of the various methods of interpretation of research results based on direct and reverse analysis, as well as automated classification of the first cycle of the relationship between the shear stress and the shear strain components obtained from the TS test. The methodology for verification of the presented interpretative methods consists in carrying out a series of laboratory tests on non-cohesive and cohesive samples of different granulation and state parameters. The course of the research includes the following steps: elaboration of the granulometric composition of several samples of soil, determination of soil index properties and execution of TS tests. Various methods of interpretation of obtained results were taken into account, in addition to conducting a comparative analysis. The study used a non-standard interpretation approach consisting of analysing one-fourth of the hysteresis loop of the first load–unload cycle of the tested samples. The obtained results confirmed the hypothesis that it is possible to estimate the degradation value of the shear modulus based on a part of the TS test results carried out under quasi-monotonic load conditions. The proposed methods of interpreting test results have confirmed their high usefulness, which is devoid of the uncertainty associated with standardised resonant column/TS testing.

Mots clés

  • torsional shear
  • back analysis
  • cluster analysis
  • shear modulus
  • small strains
Accès libre

Remarks On The Sources Of Error In The Modelling Of Lunar Geotechnical Structures

Publié en ligne: 11 Sep 2018
Pages: 133 - 139

Résumé

Abstract

Scale modelling should be a very useful strategy for the design of lunar structures. Preventing structural damages in the lunar environment is crucial and scale models are helpful to achieve this aim. The size of these models must be scaled to take into account the different gravitational levels. Since the lunar gravity acceleration is about one-sixth of the terrestrial one, it follows that the models on Earth will be very smaller than the prototype to be realized on the Moon. This strategy will represent an opportunity for engineers working on lunar structure design, provided that the errors, both computational and experimental, related to the change of scale are quantified, allowing reliable extension of the physical scale modelling results to the prototype. In this work, a three-dimensional finite element analysis of walls retaining lunar regolith backfill is described and discussed, in order to provide preliminary results, which can guide a future experimental investigation based on physical scale-modelling. In particular, computational errors related to the scale effects are assessed, with respect to a virtual prototype of the lunar geotechnical structure, and compared with errors from other sources of discrepancy, like the adopted constitutive model, the variability of the geotechnical parameters and the calculation section used in the 3D analysis. The results seem to suggest the soundness of this strategy of modelling and are likely to encourage new research, both numerical and experimental, supporting the structure serviceability assessment.

Mots clés

  • lunar geotechnical structures
  • physical scale-modelling
  • lunar regolith
  • numerical simulations
  • retaining wall
Accès libre

Application of Genetic Algorithms for the Estimation of Hydraulic Conductivity

Publié en ligne: 04 Aug 2018
Pages: 140 - 146

Résumé

Abstract

In the study described here model calibration was performed employing the inverse analysis using genetic algorithms (GA). The objective of analysis is to determine value of the coefficient of hydraulic conductivity, k. The commonly used method for the determination of coefficient of hydraulic conductivity based on Terzaghi consolidation leads to an underestimation of the value of k as the Terzaghi model does not take into account the deformation of soil skeleton. Here, an alternative methodology based on genetic algorithms is presented for the determination of the basic parameters of Biot consolidation model. It has been demonstrated that genetic algorithms are a highly effective tool enabling automatic calibration based on simple rules. The values of the coefficient of hydraulic conductivity obtained with GA are of at least one order smaller than values obtained with the Terzaghi model.

Mots clés

  • genetic algorithms
  • hydraulic conductivity
  • Biot consolidation model
Accès libre

Influence of Soil Deformation Caused by Mining on Sewage Pipelines Built Using The Pipe Jacking Method

Publié en ligne: 04 Aug 2018
Pages: 147 - 153

Résumé

Abstract

This paper discusses the issues associated with the influence of underground mining operations on sewage pipelines built using the pipe jacking method. At present, to build sewage pipelines, especially in urban areas and deep embedment, trenchless technologies are employed. Mainly in these technologies, pipes are jacked into a bored tunnel using hydraulic jacks. These methods are also applied in mining areas.

The aim of this paper is to analyse the influence of ground deformation, caused by mining operations, on sewage pipelines built using the pipe jacking method. The type of pipelines discussed here is built with butted sections, which cannot compensate the influences of mining operations in pipe joints if horizontal compression occurs in the near-surface layer of soil. Pipelines embedded in trenches in the mining areas are secured against the influence of mining operations with expansion joints, which compensate for ground deformation. Hence, in the analysis of the influence of soil deformation caused by mining on sewage pipelines built using jacking method, special attention was paid to the performance of pipe joints. Pipelines of the type are subjected to additional loads and displacements, caused by soil deformations like horizontal strains, horizontal soil displacements and surface curvatures. We propose a way to consider the influence of mining operations on sewage pipelines built using the pipe jacking method.

Mots clés

  • sewage pipeline
  • pipe jacking method
  • mining area
Accès libre

Mixture of Crushed- Stone Aggregate as Material For Substructure Layers

Publié en ligne: 04 Aug 2018
Pages: 154 - 162

Résumé

Abstract

One of the most important elements of road construction is its substructure, which constitutes the base on which the next layers of road are placed. Mixture of crushed-stone aggregate is very often used as material for substructure. The most frequently used type of aggregate is magma rocks, due to its good physical-mechanical properties. However, it is not always available, so it is substituted by sandstone or even concrete rubble aggregates. The bearing ratio CBR is a parameter determining the suitability of a certain aggregate for road substructure. It is also one of the most popular quality tests of aggregate as it does not require complex apparatus. This paper analyses the results of physical and geotechnical tests with particular focus on CBR bearing ratio of crushed aggregates and their application as substructure for road construction. There has also been an attempt to find the correlation between CBR bearing ratio and other physical and geometrical properties.

Mots clés

  • mixture of crushed-stone aggregate
  • the California bearing ratio (CBR)
  • road substructure

Planifiez votre conférence à distance avec Sciendo