Magazine et Edition

AHEAD OF PRINT

Volume 45 (2023): Edition 3 (September 2023)

Volume 45 (2023): Edition 2 (June 2023)

Volume 45 (2023): Edition 1 (March 2023)

Volume 44 (2022): Edition 4 (December 2022)

Volume 44 (2022): Edition 3 (September 2022)

Volume 44 (2022): Edition 2 (June 2022)

Volume 44 (2022): Edition 1 (March 2022)

Volume 43 (2021): Edition 4 (December 2021)

Volume 43 (2021): Edition 3 (September 2021)

Volume 43 (2021): Edition 2 (June 2021)

Volume 43 (2021): Edition s1 (December 2021)
Special Edition: Underground Infrastructure of Urban Areas

Volume 43 (2021): Edition 1 (April 2021)

Volume 42 (2020): Edition 4 (December 2020)

Volume 42 (2020): Edition 3 (September 2020)

Volume 42 (2020): Edition 2 (June 2020)

Volume 42 (2020): Edition 1 (April 2020)

Volume 41 (2019): Edition 4 (December 2019)

Volume 41 (2019): Edition 3 (September 2019)

Volume 41 (2019): Edition 2 (June 2019)

Volume 41 (2019): Edition 1 (April 2019)

Volume 40 (2018): Edition 4 (December 2018)

Volume 40 (2018): Edition 3 (November 2018)

Volume 40 (2018): Edition 2 (October 2018)

Volume 40 (2018): Edition 1 (July 2018)

Volume 39 (2017): Edition 4 (December 2017)

Volume 39 (2017): Edition 3 (September 2017)

Volume 39 (2017): Edition 2 (June 2017)

Volume 39 (2017): Edition 1 (March 2017)

Volume 38 (2016): Edition 4 (December 2016)

Volume 38 (2016): Edition 3 (September 2016)

Volume 38 (2016): Edition 2 (June 2016)

Volume 38 (2016): Edition 1 (March 2016)

Volume 37 (2015): Edition 4 (December 2015)

Volume 37 (2015): Edition 3 (September 2015)

Volume 37 (2015): Edition 2 (June 2015)

Volume 37 (2015): Edition 1 (March 2015)

Volume 36 (2015): Edition 4 (February 2015)

Volume 36 (2015): Edition 3 (February 2015)

Volume 36 (2015): Edition 2 (February 2015)

Volume 36 (2014): Edition 1 (March 2014)

Volume 35 (2013): Edition 4 (December 2013)

Volume 35 (2013): Edition 3 (September 2013)

Volume 35 (2013): Edition 2 (June 2013)

Volume 35 (2013): Edition 1 (March 2013)

Volume 34 (2012): Edition 4 (October 2012)

Volume 34 (2012): Edition 3 (October 2012)

Volume 34 (2012): Edition 2 (October 2012)

Volume 34 (2012): Edition 1 (March 2012)

Détails du magazine
Format
Magazine
eISSN
2083-831X
Première publication
09 Nov 2012
Période de publication
4 fois par an
Langues
Anglais

Chercher

Volume 41 (2019): Edition 3 (September 2019)

Détails du magazine
Format
Magazine
eISSN
2083-831X
Première publication
09 Nov 2012
Période de publication
4 fois par an
Langues
Anglais

Chercher

0 Articles

Research Article

Accès libre

Slurry shield tunneling in soft ground. Comparison between field data and 3D numerical simulation

Publié en ligne: 30 Sep 2019
Pages: 115 - 128

Résumé

Abstract

In urban areas, the control of ground surface settlement is an important issue during shield tunnel-boring machine (TBM) tunneling. These ground movements are affected by many machine control parameters. In this article, a finite difference (FD) model is developed using Itasca FLAC-3D to numerically simulate the whole process of shield TBM tunneling. The model simulates important components of the mechanized excavation process including slurry pressure on the excavation face, shield conicity, installation of segmental lining, grout injection in the annular void, and grout consolidation. The analysis results from the proposed method are compared and discussed in terms of ground movements (both vertical and horizontal) with field measurements data. The results reveal that the proposed 3D simulation is sufficient and can reasonably reproduce all the operations achieved by the TBM. In fact, the results show that the TBM parameters can be controlled to have acceptable levels of surface settlement. In particular, it seems that moderate face pressure can reduce ground movement significantly and, most importantly, can prevent the occurrence of face-expected instability when the shield crosses very weak soil layers. The shield conicity has also an important effect on ground surface settlement, which can be partly compensated by the grout pressure during tail grouting. Finally, the injection pressure at the rear of the shield significantly reduces the vertical displacements at the crown of the tunnel and, therefore, reduces the settlement at the ground surface.

Mots clés

  • Shield tunneling
  • soil–structure interaction
  • 3D numerical simulation
  • back analysis
  • settlement
Accès libre

Penetrative convection due to absorption of radiation in a magnetic nanofluid saturated porous layer

Publié en ligne: 30 Sep 2019
Pages: 129 - 142

Résumé

Abstract

The present study investigates the onset of penetrative convection in- duced by selective absorption of radiation in a magnetic nanofluid saturated porous medium. The influence of Brownian motion, thermophoresis, and magnetophoresis on magnetic nanofluid treatment is taken into consideration. The Darcy’s model is selected for the porous medium. We conduct a linear stability analysis to examine the onset of instability and evaluate the results for two different configurations, namely, when the layer is heated from below and when the layer is heated from above. The numerical investigations are carried out by applying the Chebyshev pseudospectral method. The effect of the porosity parameter E, parameter Y (represents the ratio of internal heating to boundary heating), Lewis number Le, concentration Rayleigh number Rn, Langevin parameter αL, width of nanofluid layer d, diffusivity ratio η, and modified diffusivity ratio NA is examined at the onset of convection. The results indicate that the convection commences easily with an increase in the value of Y, Le, and NA but opposite in the case with a decrease in the value of E, αL, η and d for both the two configurations. The parameter Rn advances the onset of convection when the layer is heated from below, while delays the onset of convection when the layer is heated from above.

Mots clés

  • Magnetic nanofluids
  • Penetrative convection
  • Darcy model
  • Radiation absorption
  • Magnetic field

PACS

  • 44.40.+a
  • 47.20.-k
  • 47.56.+r
  • 47.65.Cb
  • 47.35.Tv
  • 47.65.-d

MSC 2010

  • 76E06
  • 76E25
  • 76S05
  • 76W05
Accès libre

Effective Friction Angle Of Deltaic Soils In The Vistula Marshlands

Publié en ligne: 30 Sep 2019
Pages: 143 - 150

Résumé

Abstract

This article presents the results of laboratory tests on soft, normally consolidated soils from the Vistula Marshlands. Samples of high-plasticity organic soils (muds) taken from 3.2–4.0 m and 9.5–10.0 m depth, as well as peat deposit at 14.0 m, are analysed. Presented case study confirms the applicability of the Norwegian Institute of Technology (NTH) method based on Cone Penetration Tests (CPTU) and allows for a conservative estimation of effective friction angle for muds. The plastification angle equal to 14.5° for organic silt, applied in the modified NTH method, fits well the triaxial test (TX) results. Moreover, the dilative-contractive behaviour according to the CPTU soil classification based on the Robertson’s proposal from 2016 corresponds well with volumetric changes observed in the consolidated drained triaxial compression tests. The internal friction angles of the Vistula Marshlands’ muds and peats are lower in comparison with the database of similar soft soils.

Mots clés

  • Angle of internal friction
  • CPTU
  • triaxial testing
  • soft soils
  • peat
Accès libre

Effect of randomly distributed polypropylene fiber reinforcement on the shear behavior of sandy soil

Publié en ligne: 30 Sep 2019
Pages: 151 - 159

Résumé

Abstract

The inclusions of geosynthetic materials (fibers, geomembranes and geotextiles) is a new improvement technique that ensures uniformity in the soil during construction. The use of tension resisting discreet inclusions like polypropylene fibers has attracted a significant amount of attention these past years in the improvement of soil performance in a cost-efficient manner. A series of direct shear box tests were conducted on unreinforced and reinforced Chlef sand with different contents of fibers (0, 0.25, 0.5 and0.75%) in order to study the mechanical behavior of sand reinforced with polypropylene fibers. Samples were prepared at three different relative densities 30%, 50% and 80% representing loose, medium dense and dense states,respectively, and performed at normal stresses of 50, 100 and 200 kPa. The experimental results show that the mechanical characteristics are improved with the addition of polypropylene fibers. The inclusion of randomly distributed fibers has a significant effect on the shear strength and dilation of sandy soil. The increase in strength is a function of fiber content, where it has been shown that the mechanical characteristics improve with the increase in fiber content up to 0.75%, this improvement is more significant at a higher normal stress and relative density.

Mots clés

  • Sand
  • direct shear box tests
  • polypropylene fibers
  • shear strength
  • normal stress
  • relative density
Accès libre

Analysis of crack propagation in a “pull-out” test

Publié en ligne: 30 Sep 2019
Pages: 160 - 170

Résumé

Abstract

The article describes a computer analysis of the pull-out test used to calculate the force needed to pull out a rock fragment and determine the shape of this broken fragment. The analyzed material is sandstone and porphyry. The analysis included the first approach to using own subroutine in the Simulia Abaqus system, that is, which task is undertaken to accurately determine the crack path of the Finite Element Method model. The work also contains a description of laboratory tests and analytical considerations.

Mots clés

  • Pull-out test
  • rock mechanics
  • fracture mechanics
  • numerical modeling of fracture
Accès libre

Effect of settlement of foundations on the failure risk of the bottom of cylindrical steel vertical tanks for liquids

Publié en ligne: 30 Sep 2019
Pages: 171 - 176

Résumé

Abstract

Different types of foundations are used in steel, above-ground cylindrical storage tanks for liquids. If a sand-gravel foundation is used under the entire bottom of the tank or only in the central part of the tank, settlement can be expected, and it increases after many years of operation. The paper presents the typical kinds and types of soil settlements under the bottoms of the tanks, in which different types of foundations were used. Numerical analyses of the effect of the soil settlement on the state of deformations and stresses in steel sheets of the bottom under one of the real tanks, in which different types of foundations and different cases of settlement were assumed. The results of numerical analyses indicated the possibility of evaluating the state of the soil settlement and bottom sheet deformations on the basis of simple measurements of deformations of the lower part of the tank cylinder. These measurements can be very useful in assessing the possible risk of failure of the tank bottom during each period of its operation, as measurements of settlement of the bottom of a filled tank are not feasible in practice. It has been proposed that in each steel tank, the deformation of the cylinder’s sheets should be measured even before the beginning of exploitation, and that in subsequent periodical measurements, the influence of the soil settlement under the tank on the state of the cylinder deformation and bottom’s strain should be assessed more accurately.

Mots clés

  • Steel tank
  • soil settlement
  • tank deformations
  • plastic deformations
  • failure risk
0 Articles

Research Article

Accès libre

Slurry shield tunneling in soft ground. Comparison between field data and 3D numerical simulation

Publié en ligne: 30 Sep 2019
Pages: 115 - 128

Résumé

Abstract

In urban areas, the control of ground surface settlement is an important issue during shield tunnel-boring machine (TBM) tunneling. These ground movements are affected by many machine control parameters. In this article, a finite difference (FD) model is developed using Itasca FLAC-3D to numerically simulate the whole process of shield TBM tunneling. The model simulates important components of the mechanized excavation process including slurry pressure on the excavation face, shield conicity, installation of segmental lining, grout injection in the annular void, and grout consolidation. The analysis results from the proposed method are compared and discussed in terms of ground movements (both vertical and horizontal) with field measurements data. The results reveal that the proposed 3D simulation is sufficient and can reasonably reproduce all the operations achieved by the TBM. In fact, the results show that the TBM parameters can be controlled to have acceptable levels of surface settlement. In particular, it seems that moderate face pressure can reduce ground movement significantly and, most importantly, can prevent the occurrence of face-expected instability when the shield crosses very weak soil layers. The shield conicity has also an important effect on ground surface settlement, which can be partly compensated by the grout pressure during tail grouting. Finally, the injection pressure at the rear of the shield significantly reduces the vertical displacements at the crown of the tunnel and, therefore, reduces the settlement at the ground surface.

Mots clés

  • Shield tunneling
  • soil–structure interaction
  • 3D numerical simulation
  • back analysis
  • settlement
Accès libre

Penetrative convection due to absorption of radiation in a magnetic nanofluid saturated porous layer

Publié en ligne: 30 Sep 2019
Pages: 129 - 142

Résumé

Abstract

The present study investigates the onset of penetrative convection in- duced by selective absorption of radiation in a magnetic nanofluid saturated porous medium. The influence of Brownian motion, thermophoresis, and magnetophoresis on magnetic nanofluid treatment is taken into consideration. The Darcy’s model is selected for the porous medium. We conduct a linear stability analysis to examine the onset of instability and evaluate the results for two different configurations, namely, when the layer is heated from below and when the layer is heated from above. The numerical investigations are carried out by applying the Chebyshev pseudospectral method. The effect of the porosity parameter E, parameter Y (represents the ratio of internal heating to boundary heating), Lewis number Le, concentration Rayleigh number Rn, Langevin parameter αL, width of nanofluid layer d, diffusivity ratio η, and modified diffusivity ratio NA is examined at the onset of convection. The results indicate that the convection commences easily with an increase in the value of Y, Le, and NA but opposite in the case with a decrease in the value of E, αL, η and d for both the two configurations. The parameter Rn advances the onset of convection when the layer is heated from below, while delays the onset of convection when the layer is heated from above.

Mots clés

  • Magnetic nanofluids
  • Penetrative convection
  • Darcy model
  • Radiation absorption
  • Magnetic field

PACS

  • 44.40.+a
  • 47.20.-k
  • 47.56.+r
  • 47.65.Cb
  • 47.35.Tv
  • 47.65.-d

MSC 2010

  • 76E06
  • 76E25
  • 76S05
  • 76W05
Accès libre

Effective Friction Angle Of Deltaic Soils In The Vistula Marshlands

Publié en ligne: 30 Sep 2019
Pages: 143 - 150

Résumé

Abstract

This article presents the results of laboratory tests on soft, normally consolidated soils from the Vistula Marshlands. Samples of high-plasticity organic soils (muds) taken from 3.2–4.0 m and 9.5–10.0 m depth, as well as peat deposit at 14.0 m, are analysed. Presented case study confirms the applicability of the Norwegian Institute of Technology (NTH) method based on Cone Penetration Tests (CPTU) and allows for a conservative estimation of effective friction angle for muds. The plastification angle equal to 14.5° for organic silt, applied in the modified NTH method, fits well the triaxial test (TX) results. Moreover, the dilative-contractive behaviour according to the CPTU soil classification based on the Robertson’s proposal from 2016 corresponds well with volumetric changes observed in the consolidated drained triaxial compression tests. The internal friction angles of the Vistula Marshlands’ muds and peats are lower in comparison with the database of similar soft soils.

Mots clés

  • Angle of internal friction
  • CPTU
  • triaxial testing
  • soft soils
  • peat
Accès libre

Effect of randomly distributed polypropylene fiber reinforcement on the shear behavior of sandy soil

Publié en ligne: 30 Sep 2019
Pages: 151 - 159

Résumé

Abstract

The inclusions of geosynthetic materials (fibers, geomembranes and geotextiles) is a new improvement technique that ensures uniformity in the soil during construction. The use of tension resisting discreet inclusions like polypropylene fibers has attracted a significant amount of attention these past years in the improvement of soil performance in a cost-efficient manner. A series of direct shear box tests were conducted on unreinforced and reinforced Chlef sand with different contents of fibers (0, 0.25, 0.5 and0.75%) in order to study the mechanical behavior of sand reinforced with polypropylene fibers. Samples were prepared at three different relative densities 30%, 50% and 80% representing loose, medium dense and dense states,respectively, and performed at normal stresses of 50, 100 and 200 kPa. The experimental results show that the mechanical characteristics are improved with the addition of polypropylene fibers. The inclusion of randomly distributed fibers has a significant effect on the shear strength and dilation of sandy soil. The increase in strength is a function of fiber content, where it has been shown that the mechanical characteristics improve with the increase in fiber content up to 0.75%, this improvement is more significant at a higher normal stress and relative density.

Mots clés

  • Sand
  • direct shear box tests
  • polypropylene fibers
  • shear strength
  • normal stress
  • relative density
Accès libre

Analysis of crack propagation in a “pull-out” test

Publié en ligne: 30 Sep 2019
Pages: 160 - 170

Résumé

Abstract

The article describes a computer analysis of the pull-out test used to calculate the force needed to pull out a rock fragment and determine the shape of this broken fragment. The analyzed material is sandstone and porphyry. The analysis included the first approach to using own subroutine in the Simulia Abaqus system, that is, which task is undertaken to accurately determine the crack path of the Finite Element Method model. The work also contains a description of laboratory tests and analytical considerations.

Mots clés

  • Pull-out test
  • rock mechanics
  • fracture mechanics
  • numerical modeling of fracture
Accès libre

Effect of settlement of foundations on the failure risk of the bottom of cylindrical steel vertical tanks for liquids

Publié en ligne: 30 Sep 2019
Pages: 171 - 176

Résumé

Abstract

Different types of foundations are used in steel, above-ground cylindrical storage tanks for liquids. If a sand-gravel foundation is used under the entire bottom of the tank or only in the central part of the tank, settlement can be expected, and it increases after many years of operation. The paper presents the typical kinds and types of soil settlements under the bottoms of the tanks, in which different types of foundations were used. Numerical analyses of the effect of the soil settlement on the state of deformations and stresses in steel sheets of the bottom under one of the real tanks, in which different types of foundations and different cases of settlement were assumed. The results of numerical analyses indicated the possibility of evaluating the state of the soil settlement and bottom sheet deformations on the basis of simple measurements of deformations of the lower part of the tank cylinder. These measurements can be very useful in assessing the possible risk of failure of the tank bottom during each period of its operation, as measurements of settlement of the bottom of a filled tank are not feasible in practice. It has been proposed that in each steel tank, the deformation of the cylinder’s sheets should be measured even before the beginning of exploitation, and that in subsequent periodical measurements, the influence of the soil settlement under the tank on the state of the cylinder deformation and bottom’s strain should be assessed more accurately.

Mots clés

  • Steel tank
  • soil settlement
  • tank deformations
  • plastic deformations
  • failure risk