Magazine et Edition

AHEAD OF PRINT

Volume 44 (2022): Edition 3 (September 2022)

Volume 44 (2022): Edition 2 (June 2022)

Volume 44 (2022): Edition 1 (March 2022)

Volume 43 (2021): Edition 4 (December 2021)

Volume 43 (2021): Edition 3 (September 2021)

Volume 43 (2021): Edition 2 (June 2021)

Volume 43 (2021): Edition s1 (December 2021)
Special Edition: Underground Infrastructure of Urban Areas

Volume 43 (2021): Edition 1 (April 2021)

Volume 42 (2020): Edition 4 (December 2020)

Volume 42 (2020): Edition 3 (September 2020)

Volume 42 (2020): Edition 2 (June 2020)

Volume 42 (2020): Edition 1 (April 2020)

Volume 41 (2019): Edition 4 (December 2019)

Volume 41 (2019): Edition 3 (September 2019)

Volume 41 (2019): Edition 2 (June 2019)

Volume 41 (2019): Edition 1 (April 2019)

Volume 40 (2018): Edition 4 (December 2018)

Volume 40 (2018): Edition 3 (November 2018)

Volume 40 (2018): Edition 2 (October 2018)

Volume 40 (2018): Edition 1 (July 2018)

Volume 39 (2017): Edition 4 (December 2017)

Volume 39 (2017): Edition 3 (September 2017)

Volume 39 (2017): Edition 2 (June 2017)

Volume 39 (2017): Edition 1 (March 2017)

Volume 38 (2016): Edition 4 (December 2016)

Volume 38 (2016): Edition 3 (September 2016)

Volume 38 (2016): Edition 2 (June 2016)

Volume 38 (2016): Edition 1 (March 2016)

Volume 37 (2015): Edition 4 (December 2015)

Volume 37 (2015): Edition 3 (September 2015)

Volume 37 (2015): Edition 2 (June 2015)

Volume 37 (2015): Edition 1 (March 2015)

Volume 36 (2014): Edition 4 (December 2014)

Volume 36 (2014): Edition 3 (September 2014)

Volume 36 (2014): Edition 2 (June 2014)

Volume 36 (2014): Edition 1 (March 2014)

Volume 35 (2013): Edition 4 (December 2013)

Volume 35 (2013): Edition 3 (September 2013)

Volume 35 (2013): Edition 2 (June 2013)

Volume 35 (2013): Edition 1 (March 2013)

Volume 34 (2012): Edition 4 (December 2012)

Volume 34 (2012): Edition 3 (September 2012)

Volume 34 (2012): Edition 2 (June 2012)

Volume 34 (2012): Edition 1 (March 2012)

Détails du magazine
Format
Magazine
eISSN
2083-831X
Première publication
09 Nov 2012
Période de publication
4 fois par an
Langues
Anglais

Chercher

Volume 43 (2021): Edition 3 (September 2021)

Détails du magazine
Format
Magazine
eISSN
2083-831X
Première publication
09 Nov 2012
Période de publication
4 fois par an
Langues
Anglais

Chercher

8 Articles

Original Study

Accès libre

Usefulness of the CPTU method in evaluating shear modulus G0 changes in the subsoil

Publié en ligne: 30 Sep 2021
Pages: 195 - 205

Résumé

Abstract

This article contains the analysis of the correlation between the cone resistance qc from CPTU tests and shear modulus G0 determined from seismic tests SDMT and SCPTU. The analysis was performed for sands located in Poland, characterised by differential grain size distribution and origin. The significant impact of the independent variables; grain size, preconsolidation stress σ’p, geostatic vertical stress σ’v0 and relative density index on the dependencies analysed, were examined in three stages. Firstly, a general relationship between the cone resistance and shear modulus G0 was established; in the second stage, an analysis was carried out in selected groups of subsoil; and in the third stage, the influence of other independent variables was taken into account. In each stage, the functional form of the dependency was determined, and their statistical significance was assessed throughout coefficient of determination R2. For more variables, multivariable regression analysis was applied for assessment. Conducted analysis showed that the overall view of the relation between the cone resistance qc and shear modulus G0 has low evaluation of the statistical significance. This fact is consistent with the theoretical assessment of this relationship. To obtain a satisfactory assessment of this dependency, it is necessary to construct empirical equations for individual groups of soil, taking into account other independent variables; preconsolidation stress σ’p, vertical stress σ’vo and relative density index. This approach allows to assess the local correlation relationship, which is very useful during the geological project.

Mots clés

  • shear modulus
  • CPTU
  • non-cohesive soils
Accès libre

FEM modelling of the static behaviour of reinforced concrete beams considering the nonlinear behaviour of the concrete

Publié en ligne: 30 Sep 2021
Pages: 206 - 223

Résumé

Abstract

This paper presents a finite element (FE) method of modelling reinforced concrete beams. The proposed model takes into account the phenomena characteristic of reinforced concrete structures, such as the interaction between two materials (concrete and steel), the cracking caused by mechanical loads and the variation of the Young's modulus under increasing load. A relevant numerical FE analysis was carried out in the ABAQUS system using the concrete damaged plasticity (CDP) model. The character of Young's modulus variation due to increasing stress intensity level was taken from the author's own research. The results of the FE calculations were compared with the results yielded by the author's numerical bar model.

Mots clés

  • concrete
  • reinforced concrete
  • deflection
  • numerical analysis
  • Young's modulus
Accès libre

Efficiency of ventilated facades in terms of airflow in the air gap

Publié en ligne: 30 Sep 2021
Pages: 224 - 236

Résumé

Abstract

The gradual exploitation of the natural environment has forced most developed countries to promote ecological solutions and the development of sustainable construction. Ventilated facades perfectly match into this trend, and with their appropriate design, they bring real energy savings. This paper analyzes numerically the influence of the inflowing air, mimicking the wind, on the efficiency of heat removal from the ventilated space and heat transmission by thermal radiation and conduction through the consecutive layers of the external wall. For the purpose of comparison, two variants of ventilated facade were adopted: open and closed joints, at different wind speeds prevailing outside. The results obtained show that in windless weather, the ventilated facade with open joints shows higher heat removal efficiency and thus lower heat transmission to the building interior. At higher wind speeds of 5 m/s, the open-joint and closed-joint ventilated facades achieve similar heat transfer efficiency, and the prevailing temperature inside the building for the two technologies is almost identical. Subsequent increments of incoming wind on the building result in minimal differences in the heat transmission to the building interior, representing changes of about 0.1°C at increments of another 5 m/s of incoming wind. Conscious use of this facade technology, along with appropriate urban design of cities, can help reduce the energy needed to cool buildings during the summer period.

Mots clés

  • ventilated facades
  • heat transfer
  • heat transmission
  • CFD
  • numerical simulation
  • energy efficient facades
Accès libre

Characteristic parameters of soil failure criteria for plane strain conditions – experimental and semi-theoretical study

Publié en ligne: 30 Sep 2021
Pages: 237 - 254

Résumé

Abstract

The paper concerns the characteristic parameters of the selected isotropic failure criteria, i.e. Mohr–Coulomb, Drucker–Prager, Matsuoka–Nakai and Lade–Duncan. The parameters are determined directly from the failure criteria and stress measurements or by semi-theoretical approach, assuming that the soil obeys the associated flow rule and using the plane strain condition. In the latter case, the parameters can be expressed as functions of the plane strain internal friction angle, which is determined from measurements. The principal stress tensor components, corresponding to the soil peak strength and necessary to obtain the failure criteria parameters, are measured in a series of true triaxial, plane strain tests, on coarse Skarpa sand samples of different initial relative density, subjected to various confining pressures.

Mots clés

  • soil failure criteria
  • soil peak strength
  • plane strain conditions
  • true triaxial apparatus
  • plastic flow rule
Accès libre

Evaluation of Tunnel Contour Quality Index on the Basis of Terrestrial Laser Scanning Data

Publié en ligne: 30 Sep 2021
Pages: 255 - 269

Résumé

Abstract

The Tunnel Contour Quality Index (TCI) is an index established by Kim and Bruland for an effective management of a tunnel contour quality. It is estimated on a basis of measurements of two contour profiles within a single blasting round, using a laser profiler. However, the representativeness of measurement results obtained that way for the assessment of a contour quality of the entire blasting round is disputable. Terrestrial laser scanning (TLS) technology, combined with available numerical surface modeling tools, enables development of three-dimensional models of a monitored surface. The article reports results of TCI calculations based on TLS data. The presented TLS technique is based not only on selected cross-sections of the tunnel contour but also on the description of the morphology of the tunnel contour surface. The case study concerns measurements of the “Mały Luboń” tunnel niche, located in Naprawa, Poland. The TCI values for three blasting rounds were determined in accordance with Kim and Bruland's guidelines and were compared to TCI values determined with the proposed TLS technique. On a basis of this comparison, it can be concluded that the results obtained with the TLS technique are more reliable and representative for description of the contour quality of the entire blasting round than results obtained with the laser profiling technique.

Mots clés

  • TCI
  • Tunnel
  • Contour quality
  • Terrestrial laser scanning (TLS)
  • Overbreak
  • Contour roughness
Accès libre

A comprehensive approach to the optimization of design solutions for dry anti-flood reservoir dams

Publié en ligne: 30 Sep 2021
Pages: 270 - 284

Résumé

Abstract

The article proposes the methodology of designing dams of dry flood control reservoirs. The algorithm is developed so as to meet all the requirements given in the Eurocode 7 and, at the same time, to be efficient in terms of necessary calculation time. Furthermore, the presented numerical procedure enables the optimization of design solutions, e.g. the depth and length of the anti-filtration barrier, by means of parametric analyses. The approach assumes the use of numerical methods, in particular, finite element (FE) analysis. Three-dimensional (3D) reconstruction of the terrain topography and subsoil layer arrangement performed in step (1) sets the base for further analyses. In step (2), the filtration phenomena are assessed based on the 3D analysis of a transient groundwater flow. In step (3), the state of displacement is evaluated and the stability is verified for all the relevant phases of construction and operation of the facility, in particular, in the course of simulated flood detention. The analyses in step (3) are carried out on 2D models corresponding to the design cross-sections of the dam. This significantly reduces the computation time (compared to 3D analysis) and, at the same time, provides a safe estimate of factor of safety. The performance of the proposed algorithm is shown on the numerical examples of the computations concerning the dam of Szalejów Górny dry anti-flood reservoir located in Poland.

Mots clés

  • finite element method
  • stability
  • settlement
  • filtration
  • kriging
Accès libre

Seismic bearing capacity of shallow strip footing embedded in slope resting on two-layered soil

Publié en ligne: 30 Sep 2021
Pages: 285 - 306

Résumé

Abstract

In this paper, the limit equilibrium method with the pseudo-static approach is developed in the evaluation of the influence of slope on the bearing capacity of a shallow foundation. Particle swarm optimisation (PSO) technique is applied to optimise the solution. Minimum bearing capacity coefficients of shallow foundation near slopes are presented in the form of a design table for practical use in geotechnical engineering. It has been shown that the seismic bearing capacity coefficients reduce considerably with an increase in seismic coefficient. Be sides, the magnitude of bearing capacity coefficients decreases further with an increase in slope inclination.

Mots clés

  • Pseudo-static
  • Particle swarm optimisation
  • Bearing capacity coefficient
  • Slope inclination
  • Limit equilibrium
Accès libre

Laboratory tests and analysis of CIPP epoxy resin internal liners used in pipelines – part II: comparative analysis with the use of the FEM and engineering algorithms

Publié en ligne: 30 Sep 2021
Pages: 307 - 322

Résumé

Abstract

In the case of underground network infrastructure it can be seen that objects functioning in the second technical condition, according to DWA-ATV 143-2, and subjected to rehabilitation with the use of close-fit trenchless technologies are capable of withstanding external loads. The main external load that is taken into account in engineering calculations in the case of conduits in the second technical condition is external groundwater pressure.

In order to compare design parameters obtained with the use of various calculation methods, a comparative analysis was conducted in order to determine the values of critical pressure. The calculations were carried out using popular engineering algorithms.

In addition, analyses using the Finite Element Method and Abaqus software as a computational tool were carried out for the purpose of verifying laboratory tests. This paper aims to broaden knowledge concerning the possibility of performing control numerical analyses for close-fit liners installed in pipelines that are in the second technical condition according to DWA-ATV 143-2.

The analyses were carried out on ten 3D models. The models were parameterized in order to reflect the CIPP samples in the most accurate way. The computational models were built based on assumptions, which are commonly used in this type of scientific analysis, regarding material parameters and their interactions.

The direct value of the performed engineering calculations and numerical analyses is the extension of knowledge in the field of strength parameters that are obtained by various material groups of close-fit liners. Comparative analysis of the results of laboratory tests and numerical analyses, and the conclusions that result from them, constitute the basis for the optimization of the design process and the individual approach to issues related to the use of liners that strengthen underground pipelines.

Mots clés

  • no-dig technologies
  • laboratory tests
  • close-fit lining
  • sewer rehabilitation
8 Articles

Original Study

Accès libre

Usefulness of the CPTU method in evaluating shear modulus G0 changes in the subsoil

Publié en ligne: 30 Sep 2021
Pages: 195 - 205

Résumé

Abstract

This article contains the analysis of the correlation between the cone resistance qc from CPTU tests and shear modulus G0 determined from seismic tests SDMT and SCPTU. The analysis was performed for sands located in Poland, characterised by differential grain size distribution and origin. The significant impact of the independent variables; grain size, preconsolidation stress σ’p, geostatic vertical stress σ’v0 and relative density index on the dependencies analysed, were examined in three stages. Firstly, a general relationship between the cone resistance and shear modulus G0 was established; in the second stage, an analysis was carried out in selected groups of subsoil; and in the third stage, the influence of other independent variables was taken into account. In each stage, the functional form of the dependency was determined, and their statistical significance was assessed throughout coefficient of determination R2. For more variables, multivariable regression analysis was applied for assessment. Conducted analysis showed that the overall view of the relation between the cone resistance qc and shear modulus G0 has low evaluation of the statistical significance. This fact is consistent with the theoretical assessment of this relationship. To obtain a satisfactory assessment of this dependency, it is necessary to construct empirical equations for individual groups of soil, taking into account other independent variables; preconsolidation stress σ’p, vertical stress σ’vo and relative density index. This approach allows to assess the local correlation relationship, which is very useful during the geological project.

Mots clés

  • shear modulus
  • CPTU
  • non-cohesive soils
Accès libre

FEM modelling of the static behaviour of reinforced concrete beams considering the nonlinear behaviour of the concrete

Publié en ligne: 30 Sep 2021
Pages: 206 - 223

Résumé

Abstract

This paper presents a finite element (FE) method of modelling reinforced concrete beams. The proposed model takes into account the phenomena characteristic of reinforced concrete structures, such as the interaction between two materials (concrete and steel), the cracking caused by mechanical loads and the variation of the Young's modulus under increasing load. A relevant numerical FE analysis was carried out in the ABAQUS system using the concrete damaged plasticity (CDP) model. The character of Young's modulus variation due to increasing stress intensity level was taken from the author's own research. The results of the FE calculations were compared with the results yielded by the author's numerical bar model.

Mots clés

  • concrete
  • reinforced concrete
  • deflection
  • numerical analysis
  • Young's modulus
Accès libre

Efficiency of ventilated facades in terms of airflow in the air gap

Publié en ligne: 30 Sep 2021
Pages: 224 - 236

Résumé

Abstract

The gradual exploitation of the natural environment has forced most developed countries to promote ecological solutions and the development of sustainable construction. Ventilated facades perfectly match into this trend, and with their appropriate design, they bring real energy savings. This paper analyzes numerically the influence of the inflowing air, mimicking the wind, on the efficiency of heat removal from the ventilated space and heat transmission by thermal radiation and conduction through the consecutive layers of the external wall. For the purpose of comparison, two variants of ventilated facade were adopted: open and closed joints, at different wind speeds prevailing outside. The results obtained show that in windless weather, the ventilated facade with open joints shows higher heat removal efficiency and thus lower heat transmission to the building interior. At higher wind speeds of 5 m/s, the open-joint and closed-joint ventilated facades achieve similar heat transfer efficiency, and the prevailing temperature inside the building for the two technologies is almost identical. Subsequent increments of incoming wind on the building result in minimal differences in the heat transmission to the building interior, representing changes of about 0.1°C at increments of another 5 m/s of incoming wind. Conscious use of this facade technology, along with appropriate urban design of cities, can help reduce the energy needed to cool buildings during the summer period.

Mots clés

  • ventilated facades
  • heat transfer
  • heat transmission
  • CFD
  • numerical simulation
  • energy efficient facades
Accès libre

Characteristic parameters of soil failure criteria for plane strain conditions – experimental and semi-theoretical study

Publié en ligne: 30 Sep 2021
Pages: 237 - 254

Résumé

Abstract

The paper concerns the characteristic parameters of the selected isotropic failure criteria, i.e. Mohr–Coulomb, Drucker–Prager, Matsuoka–Nakai and Lade–Duncan. The parameters are determined directly from the failure criteria and stress measurements or by semi-theoretical approach, assuming that the soil obeys the associated flow rule and using the plane strain condition. In the latter case, the parameters can be expressed as functions of the plane strain internal friction angle, which is determined from measurements. The principal stress tensor components, corresponding to the soil peak strength and necessary to obtain the failure criteria parameters, are measured in a series of true triaxial, plane strain tests, on coarse Skarpa sand samples of different initial relative density, subjected to various confining pressures.

Mots clés

  • soil failure criteria
  • soil peak strength
  • plane strain conditions
  • true triaxial apparatus
  • plastic flow rule
Accès libre

Evaluation of Tunnel Contour Quality Index on the Basis of Terrestrial Laser Scanning Data

Publié en ligne: 30 Sep 2021
Pages: 255 - 269

Résumé

Abstract

The Tunnel Contour Quality Index (TCI) is an index established by Kim and Bruland for an effective management of a tunnel contour quality. It is estimated on a basis of measurements of two contour profiles within a single blasting round, using a laser profiler. However, the representativeness of measurement results obtained that way for the assessment of a contour quality of the entire blasting round is disputable. Terrestrial laser scanning (TLS) technology, combined with available numerical surface modeling tools, enables development of three-dimensional models of a monitored surface. The article reports results of TCI calculations based on TLS data. The presented TLS technique is based not only on selected cross-sections of the tunnel contour but also on the description of the morphology of the tunnel contour surface. The case study concerns measurements of the “Mały Luboń” tunnel niche, located in Naprawa, Poland. The TCI values for three blasting rounds were determined in accordance with Kim and Bruland's guidelines and were compared to TCI values determined with the proposed TLS technique. On a basis of this comparison, it can be concluded that the results obtained with the TLS technique are more reliable and representative for description of the contour quality of the entire blasting round than results obtained with the laser profiling technique.

Mots clés

  • TCI
  • Tunnel
  • Contour quality
  • Terrestrial laser scanning (TLS)
  • Overbreak
  • Contour roughness
Accès libre

A comprehensive approach to the optimization of design solutions for dry anti-flood reservoir dams

Publié en ligne: 30 Sep 2021
Pages: 270 - 284

Résumé

Abstract

The article proposes the methodology of designing dams of dry flood control reservoirs. The algorithm is developed so as to meet all the requirements given in the Eurocode 7 and, at the same time, to be efficient in terms of necessary calculation time. Furthermore, the presented numerical procedure enables the optimization of design solutions, e.g. the depth and length of the anti-filtration barrier, by means of parametric analyses. The approach assumes the use of numerical methods, in particular, finite element (FE) analysis. Three-dimensional (3D) reconstruction of the terrain topography and subsoil layer arrangement performed in step (1) sets the base for further analyses. In step (2), the filtration phenomena are assessed based on the 3D analysis of a transient groundwater flow. In step (3), the state of displacement is evaluated and the stability is verified for all the relevant phases of construction and operation of the facility, in particular, in the course of simulated flood detention. The analyses in step (3) are carried out on 2D models corresponding to the design cross-sections of the dam. This significantly reduces the computation time (compared to 3D analysis) and, at the same time, provides a safe estimate of factor of safety. The performance of the proposed algorithm is shown on the numerical examples of the computations concerning the dam of Szalejów Górny dry anti-flood reservoir located in Poland.

Mots clés

  • finite element method
  • stability
  • settlement
  • filtration
  • kriging
Accès libre

Seismic bearing capacity of shallow strip footing embedded in slope resting on two-layered soil

Publié en ligne: 30 Sep 2021
Pages: 285 - 306

Résumé

Abstract

In this paper, the limit equilibrium method with the pseudo-static approach is developed in the evaluation of the influence of slope on the bearing capacity of a shallow foundation. Particle swarm optimisation (PSO) technique is applied to optimise the solution. Minimum bearing capacity coefficients of shallow foundation near slopes are presented in the form of a design table for practical use in geotechnical engineering. It has been shown that the seismic bearing capacity coefficients reduce considerably with an increase in seismic coefficient. Be sides, the magnitude of bearing capacity coefficients decreases further with an increase in slope inclination.

Mots clés

  • Pseudo-static
  • Particle swarm optimisation
  • Bearing capacity coefficient
  • Slope inclination
  • Limit equilibrium
Accès libre

Laboratory tests and analysis of CIPP epoxy resin internal liners used in pipelines – part II: comparative analysis with the use of the FEM and engineering algorithms

Publié en ligne: 30 Sep 2021
Pages: 307 - 322

Résumé

Abstract

In the case of underground network infrastructure it can be seen that objects functioning in the second technical condition, according to DWA-ATV 143-2, and subjected to rehabilitation with the use of close-fit trenchless technologies are capable of withstanding external loads. The main external load that is taken into account in engineering calculations in the case of conduits in the second technical condition is external groundwater pressure.

In order to compare design parameters obtained with the use of various calculation methods, a comparative analysis was conducted in order to determine the values of critical pressure. The calculations were carried out using popular engineering algorithms.

In addition, analyses using the Finite Element Method and Abaqus software as a computational tool were carried out for the purpose of verifying laboratory tests. This paper aims to broaden knowledge concerning the possibility of performing control numerical analyses for close-fit liners installed in pipelines that are in the second technical condition according to DWA-ATV 143-2.

The analyses were carried out on ten 3D models. The models were parameterized in order to reflect the CIPP samples in the most accurate way. The computational models were built based on assumptions, which are commonly used in this type of scientific analysis, regarding material parameters and their interactions.

The direct value of the performed engineering calculations and numerical analyses is the extension of knowledge in the field of strength parameters that are obtained by various material groups of close-fit liners. Comparative analysis of the results of laboratory tests and numerical analyses, and the conclusions that result from them, constitute the basis for the optimization of the design process and the individual approach to issues related to the use of liners that strengthen underground pipelines.

Mots clés

  • no-dig technologies
  • laboratory tests
  • close-fit lining
  • sewer rehabilitation

Planifiez votre conférence à distance avec Sciendo