This work deals with the characterization of Ni–P coating prepared via electroless deposition on wrought AZ31magnesium alloy. For the application of electroless deposition was proposed and optimized a suitable pretreatment process of magnesium alloy surface followed by Ni–P coating in the nickel bath. The chemical composition of Ni–P based coating was characterized using the scanning electron microscope with chemical composition analysis. Next, physico-chemical properties and mechanical characteristics of Ni–P coating were evaluated. The mechanism of corrosion degradation of the coating and the substrate was also studied in this work.
The objective of this work was to examine the properties of molybdate or tungstate based pigments whose surface has been coated with a conductive polymer, viz. either polyaniline phosphate (PANI) or polypyrrole phosphate (PPY), if used as pigments in organic coating materials. The anticorrosion pigments were prepared by high-temperature solid-state synthesis from the respective oxides, carbonates. The composite pigments (pigment/conductive polymer) were dispersed in a solvent-type epoxy-ester resin binder to obtain a series of paints whose anticorrosion properties were assessed by means of corrosion tests in accelerated corrosion test and by the linear polarisation method. Focus was on the anticorrosion properties of the paints depending on the pigment surface treatment, initial pigment composition, and pigment volume concentration (PVC) in the paint. The surface-treated pigment particles were expected to have a favourable effect on the anticorrosion and the mechanical properties of epoxy-ester resin based paints.
The paper deals with evaluation the corrosion characteristics of welded joints in two corrosion environments – SARS and 0.1 M NaCl solution. Welds were made by MAG technology using three protective gas mixtures - Ferroline He20C8, Ferroline C18 and Ferroline C6X1. There were realised chemical analysis of the base material and weld metal of all welded joints, Vickers hardness test of the base material, heat affected zones and weld metals, metallographic analysis of all areas of welds and measurement of base and weld metal corrosion rate in two corrosion environments. Hardness increases from the base material through the HAZ to the weld metal. The maximum difference between the hardness of the weld metal and the base material is 36 HV 0.1 - realised welds do not show a notch effect. The corrosion rate of the materials in SARS solution was higher than in the NaCl solution. The corrosion rate in weld metals of all welded joints was lower than the corrosion rate of the base material. The lowest corrosion rate in both corrosive environments showed a weld metal made using shielding gas Ferroline C18.
Acrylate varnishes are due to their suitable properties frequently used in restoration and preservation on variety of historical objects and materials. Common practice of their application involves using as an adhesive agents, consolidants and protective coatings. The purpose of protective coatings especially on metal artefacts is to reduce access of pollutants to the surface of the artefact. In this paper, coatings prepared from two acrylate polymers Paraloid B72 and Paraloid B48N are compared in terms of permeability for water and level of protective properties against air pollutants. For this purpose, electrochemical impedance spectroscopy and resistometric method were chosen for analysis of the coatings. Obtained results show lower permeability for water in case of Paraloid B72. However, same coating provided lower protection against air pollutants than Paraloid B48N coating.
Increasing the functional parameters of coating composition-based protective coatings is a strongly emerging trend. However, there are some limits to the increasing of utility parameters of protective coatings – always where such parameters are opposite to the basic property, which is corrosion protection. The presented study describes a case of a premature failure in the corrosion protection secured by a duplex system that occurred after the paint system had been enriched with an anti-sliding property.
This work deals with the characterization of Ni–P coating prepared via electroless deposition on wrought AZ31magnesium alloy. For the application of electroless deposition was proposed and optimized a suitable pretreatment process of magnesium alloy surface followed by Ni–P coating in the nickel bath. The chemical composition of Ni–P based coating was characterized using the scanning electron microscope with chemical composition analysis. Next, physico-chemical properties and mechanical characteristics of Ni–P coating were evaluated. The mechanism of corrosion degradation of the coating and the substrate was also studied in this work.
The objective of this work was to examine the properties of molybdate or tungstate based pigments whose surface has been coated with a conductive polymer, viz. either polyaniline phosphate (PANI) or polypyrrole phosphate (PPY), if used as pigments in organic coating materials. The anticorrosion pigments were prepared by high-temperature solid-state synthesis from the respective oxides, carbonates. The composite pigments (pigment/conductive polymer) were dispersed in a solvent-type epoxy-ester resin binder to obtain a series of paints whose anticorrosion properties were assessed by means of corrosion tests in accelerated corrosion test and by the linear polarisation method. Focus was on the anticorrosion properties of the paints depending on the pigment surface treatment, initial pigment composition, and pigment volume concentration (PVC) in the paint. The surface-treated pigment particles were expected to have a favourable effect on the anticorrosion and the mechanical properties of epoxy-ester resin based paints.
The paper deals with evaluation the corrosion characteristics of welded joints in two corrosion environments – SARS and 0.1 M NaCl solution. Welds were made by MAG technology using three protective gas mixtures - Ferroline He20C8, Ferroline C18 and Ferroline C6X1. There were realised chemical analysis of the base material and weld metal of all welded joints, Vickers hardness test of the base material, heat affected zones and weld metals, metallographic analysis of all areas of welds and measurement of base and weld metal corrosion rate in two corrosion environments. Hardness increases from the base material through the HAZ to the weld metal. The maximum difference between the hardness of the weld metal and the base material is 36 HV 0.1 - realised welds do not show a notch effect. The corrosion rate of the materials in SARS solution was higher than in the NaCl solution. The corrosion rate in weld metals of all welded joints was lower than the corrosion rate of the base material. The lowest corrosion rate in both corrosive environments showed a weld metal made using shielding gas Ferroline C18.
Acrylate varnishes are due to their suitable properties frequently used in restoration and preservation on variety of historical objects and materials. Common practice of their application involves using as an adhesive agents, consolidants and protective coatings. The purpose of protective coatings especially on metal artefacts is to reduce access of pollutants to the surface of the artefact. In this paper, coatings prepared from two acrylate polymers Paraloid B72 and Paraloid B48N are compared in terms of permeability for water and level of protective properties against air pollutants. For this purpose, electrochemical impedance spectroscopy and resistometric method were chosen for analysis of the coatings. Obtained results show lower permeability for water in case of Paraloid B72. However, same coating provided lower protection against air pollutants than Paraloid B48N coating.
Increasing the functional parameters of coating composition-based protective coatings is a strongly emerging trend. However, there are some limits to the increasing of utility parameters of protective coatings – always where such parameters are opposite to the basic property, which is corrosion protection. The presented study describes a case of a premature failure in the corrosion protection secured by a duplex system that occurred after the paint system had been enriched with an anti-sliding property.