1. bookTom 30 (2020): Zeszyt 4 (December 2020)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2083-8492
Pierwsze wydanie
05 Apr 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
access type Otwarty dostęp

Fault identification in underwater vehicle thrusters via sliding mode observers

Data publikacji: 31 Dec 2020
Tom & Zeszyt: Tom 30 (2020) - Zeszyt 4 (December 2020)
Zakres stron: 679 - 688
Otrzymano: 27 Mar 2020
Przyjęty: 13 Jul 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2083-8492
Pierwsze wydanie
05 Apr 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Abstract

The paper is devoted to the problem of increasing the efficiency of underwater vehicles by using a fault diagnosis system for their thrusters which provides detection, isolation, and identification of minor faults. To address the problem, a two-stage method is proposed. At the first stage, a bank of diagnostic observers is designed to detect and isolate the emerging faults. Each observer in this bank is constructed to be sensitive to some set of faults and insensitive to others. At the second stage, additional observers working in sliding mode are synthesized in order to accurately estimate the error value in the signal obtained from the angular velocity sensor and to estimate deviations of the thruster parameters from their nominal values due to the faults. In contrast to the existing solutions, reduced-order (i.e., lower-dimensional) models of the original system are proposed as a basis to construct sliding mode observers. This approach permits reduction of the complexity of the obtained observers in comparison with the known methods, where full-order observers are constructed. The simulation results show the efficiency and high quality of all synthesized observers. In all cases considered, it was possible to detect typical faults, as well as estimate their values.

Keywords

Alwi, H. and Edwards, C. (2008). Fault tolerant control using sliding modes with on-line control allocation, Automatica44(7): 1859–1866, DOI: 10.1016/j.automatica.2007.10.034.10.1016/j.automatica.2007.10.034Search in Google Scholar

Bartoszewicz, A. and Adamiak, K. (2019). A reference trajectory based discrete time sliding mode control strategy, International Journal of Applied Mathematics and Computer Science29(3): 517–525, DOI: 10.1515/amcs-2019-0038.Search in Google Scholar

Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer, Berlin.Search in Google Scholar

Byrski, W., Drapała, M. and Byrski, J. (2019). An adaptive identification method based on the modulating functions technique and exact state observers for modeling and simulation of a nonlinear MISO glass melting process, International Journal of Applied Mathematics and Computer Science29(4): 739–757, DOI: 10.2478/amcs-2019-0055.10.2478/amcs-2019-0055Search in Google Scholar

Chirikjian, G. (2009). Robotic self-replication, self-diagnosis, and self-repair: Probabilistic considerations, in H. Asama et al. (Eds), Distributed Autonomous Robotic Systems 8, Springer, Berlin/Heiderberg, pp. 273–281, DOI: 10.1007/978-3-642-00644-9_24.10.1007/978-3-642-00644-9_24Search in Google Scholar

Daidola, J. and Johnson, F. (1992). Propeller Selection and Optimization Program, Manual for the Society of Naval Architects and Marine, New York, NY.Search in Google Scholar

Davila, J., Fridman, L. and Poznyak, A. (2006). Observation and identification of mechanical systems via second order sliding modes, International Journal of Control79(10): 1251–1262, DOI: 10.1080/00207170600801635.10.1080/00207170600801635Search in Google Scholar

Edwards, C., Alwi, H. and Tan, C.P. (2012). Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems, International Journal of Applied Mathematics and Computer Science22(1): 109–124, DOI: 10.2478/v10006-012-0008-7.10.2478/v10006-012-0008-7Search in Google Scholar

Edwards, C. and Spurgeon, S. (1994). On the development of discontinuous observers, International Journal of Control59(5): 1211–1229, DOI: 10.1080/00207179408923128.10.1080/00207179408923128Search in Google Scholar

Edwards, C., Spurgeon, S. and Patton, R. (2000). Sliding mode observers for fault detection and isolation, Automatica36(4): 541–553, DOI: 10.1016/S0005-1098(99)00177-6.10.1016/S0005-1098(99)00177-6Search in Google Scholar

Escobet, T., Bregon, A., Pulido, B. and Puig, V. (2019). Fault Diagnosis of Dynamic Systems, Springer, Berlin.10.1007/978-3-030-17728-7Search in Google Scholar

Filaretov, V., Zhirabok, A., Zuev, A. and Protcenko, A. (2012). The development of the faults accommodation system for actuators of multilink manipulators, Proceedings of the 23rd DAAAM International Symposium on Intelligent Manufacturing and Automation, Vienna, Austria, pp. 575–578.Search in Google Scholar

Fridman, L., Levant, A. and Davila, J. (2007). Observation of linear systems with unknown inputs via high-order sliding modes, International Journal of Systems Science38(10): 773–791, DOI: 10.1080/00207720701409538.10.1080/00207720701409538Search in Google Scholar

Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, New York, NY.Search in Google Scholar

He, J. and Zhang, C. (2012). Fault reconstruction based on sliding mode observer for nonlinear systems, Mathematical Problems in Engineering2012(2): 1–22, DOI: 10.1155/2012/451843.10.1155/2012/451843Search in Google Scholar

Inzarcev, A., Kiselev, L. and Kostenko, V. (2018). Underwater Robotics: Systems, Technologies, Application, IMTP FEB RAS, Vladivostok, (in Russian).Search in Google Scholar

Kalsi, K., Hui, S. and Zak, S. (2011). Unknown input and sensor fault estimation using sliding-mode observers, Proceedings of the American Control Conference, San Francisco, CA, USA, pp. 1364–1369.Search in Google Scholar

Mironovsky, L. (1998). Functional Diagnosis of Dynamic Systems, Nauka, Moscow, (in Russian).Search in Google Scholar

Pisarets, A., Zhirabok, A. and Inzartsev, A. (2004). On diagnosis for thrusters of underwater vehicles, Proceedings of the Sixth ISOPE Pacific/Asia Offshore Mechanics Symposium, Vladivostok, Russia, pp. 255–259.Search in Google Scholar

Rascón, R., Rosas, D. and Hernandez-Balbuena, D. (2017). Regulation control of an underactuated mechanical system with discontinuous friction and backlash, International Journal of Applied Mathematics and Computer Science27(4): 785–797, DOI: 10.1515/amcs-2017-0055.10.1515/amcs-2017-0055Search in Google Scholar

Sarkar, N., Podder, T. and Antonelli, G. (2002). Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation, IEEE Transactions on Robotics and Automation18(2): 223–233, DOI: 10.1109/TRA.2002.999650.10.1109/TRA.2002.999650Search in Google Scholar

Simani, S., Fantuzzi, C. and Patton, R. (2002). Model-based Fault Diagnosis in Dynamic Systems Using Identification, Springer, Berlin.10.1007/978-1-4471-3829-7Search in Google Scholar

Tan, C. and Edwards, C. (2003). Sliding mode observers for robust detection and reconstruction of actuator and sensor faults, International Journal of Robust and Nonlinear Control, 13(5): 443–463, DOI: 10.1002/rnc.723.10.1002/rnc.723Search in Google Scholar

Utkin, V. (1992). Sliding Modes in Control Optimization, Springer, Berlin.10.1007/978-3-642-84379-2Search in Google Scholar

Wang, J. (2012a). Fault diagnosis of underwater vehicle with FNN, Proceedings of the 10th World Congress on Intelligent Control and Automation, Beijing, China, pp. 2931–2934, DOI: 10.1109/WCICA.2012.6358371.10.1109/WCICA.2012.6358371Search in Google Scholar

Wang, J. (2012b). Fault diagnosis of underwater vehicle with neural network, Proceedings of the 24th Chinese Control and Decision Conference (CCDC), Taiyuan, China, pp. 1613–1617, DOI: 10.1109/CCDC.2012.6243012.10.1109/CCDC.2012.6243012Search in Google Scholar

Wang, J., Wu, G., Wan, L., Sun, Y. and Jiang, D. (2009). Recurrent neural network applied to fault diagnosis of underwater robots, Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, pp. 593–598, DOI: 10.1109/ICICISYS.2009.5357773.10.1109/ICICISYS.2009.5357773Search in Google Scholar

Zhang, M., Wu, J. and Wang, Y. (2011). Simultaneous faults detection and location of thrusters and sensors for autonomous underwater vehicle, Proceedings of the 4th International Conference on Intelligent Computation Technology and Automation, Shenzhen, China, pp. 504–507. DOI: 10.1109/ICICTA.2011.139.10.1109/ICICTA.2011.139Search in Google Scholar

Zhao, B., Skjetne, R., Blanke, M. and Dukan, F. (2014). Particle filter for fault diagnosis and robust navigation of underwater robot, IEEE Transactions on Control Systems Technology22(6): 2399–2407, DOI: 10.1109/TCST.2014.2300815.10.1109/TCST.2014.2300815Search in Google Scholar

Zhirabok, A., Shumsky, A., Solyanik, S. and Suvorov, A. (2017). Fault detection in nonlinear systems via linear methods, International Journal of Applied Mathematics and Computer Science27(2): 261–272, DOI: 10.1515/amcs-2017-0019.10.1515/amcs-2017-0019Search in Google Scholar

Zhirabok, A., Zuev, A. and Shumsky, A. (2019). Diagnosis of linear systems based on sliding mode observers, Journal of Computer and Systems Sciences International58(6): 898–914, DOI: 10.1134/S1064230719040166.10.1134/S1064230719040166Search in Google Scholar

Zhirabok, A., Zuev, A. and Shumsky, A. (2020a). Diagnosis of linear dynamic systems: An approach based on sliding mode observers, Automation and Remote Control81(2): 345–358, DOI: 10.1134/S0005117920020022.10.1134/S0005117920020022Search in Google Scholar

Zhirabok, A., Zuev, A. and Shumsky, A. (2020b). Identification of faults in the sensors of technical systems with the use of sliding mode observers, Measurement Techniques62(10): 869–878, DOI: 10.1007/s11018-020-01707-1.10.1007/s11018-020-01707-1Search in Google Scholar

Zhu, D. and Sun, B. (2013). Information fusion fault diagnosis method for unmanned underwater vehicle thrusters, IET Electrical Systems in Transportation3(4): 102–111, DOI: 10.1049/iet-est.2012.0052.10.1049/iet-est.2012.0052Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo