Construction of constrained experimental designs on finite spaces for a modified Ek -optimality criterion
Data publikacji: 31 gru 2020
Zakres stron: 659 - 677
Otrzymano: 23 maj 2020
Przyjęty: 13 paź 2020
DOI: https://doi.org/10.34768/amcs-2020-0049
Słowa kluczowe
© 2020 Dariusz Uciński, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A simple computational algorithm is proposed for minimizing sums of largest eigenvalues of the matrix inverse over the set of all convex combinations of a finite number of nonnegative definite matrices subject to additional box constraints on the weights of those combinations. Such problems arise when experimental designs aiming at minimizing sums of largest asymptotic variances of the least-squares estimators are sought and the design region consists of finitely many support points, subject to the additional constraints that the corresponding design weights are to remain within certain limits. The underlying idea is to apply the method of outer approximations for solving the associated convex semi-infinite programming problem, which reduces to solving a sequence of finite min-max problems. A key novelty here is that solutions to the latter are found using generalized simplicial decomposition, which is a recent extension of the classical simplicial decomposition to nondifferentiable optimization. Thereby, the dimensionality of the design problem is drastically reduced. The use of the algorithm is illustrated by an example involving optimal sensor node activation in a large sensor network collecting measurements for parameter estimation of a spatiotemporal process.