1. bookTom 30 (2020): Zeszyt 4 (December 2020)
Informacje o czasopiśmie
Pierwsze wydanie
05 Apr 2007
Częstotliwość wydawania
4 razy w roku
access type Otwarty dostęp

Response of Lyapunov exponents to diffusion state of biological networks

Data publikacji: 31 Dec 2020
Tom & Zeszyt: Tom 30 (2020) - Zeszyt 4 (December 2020)
Zakres stron: 689 - 702
Otrzymano: 20 Apr 2020
Przyjęty: 31 Aug 2020
Informacje o czasopiśmie
Pierwsze wydanie
05 Apr 2007
Częstotliwość wydawania
4 razy w roku

The topologies of protein-protein interaction networks are uncertain and noisy. The network topology determines the reliability of computational knowledge acquired from noisy networks and can impose the deterministic and non-deterministic character of the resulting data. In this study, we analyze the effect of the network topology on Lyapunov exponents and its relationship with network stability. We define the methodology to convert the network data into signal data and obtain the Lyapunov exponents for a variety of networks. We then compare the Lyapunov exponent response and the stability results. Our technique can be applied to all types of network topologies as demonstrated with our experiments, conducted on both synthetic and real networks from public databases. For the first time, this article presents findings where Lyapunov exponents are evaluated under topological mutations and used for network analysis. Experimental results show that Lyapunov exponents have a strong correlation with network stability and both are correlatively affected by the network model. Hence we develop a novel coefficient, termed LEC, to measure the robustness of biological networks. LEC can be applied to real or synthetic biological networks rapidly. Results are a striking indication that the Lyapunov exponent is a potential candidate measure for network analysis.


Abarbanel, H. (2012). Analysis of Observed Chaotic Data, Springer Science, New York, NY.Search in Google Scholar

Abarbanel, H.D., Brown, R., Sidorowich, J.J. and Tsimring, L.S. (1993). The analysis of observed chaotic data in physical systems, Reviews of Modern Physics65(4): 1331.10.1103/RevModPhys.65.1331Search in Google Scholar

Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks, Reviews of Modern Physics74(1): 47.10.1103/RevModPhys.74.47Search in Google Scholar

Alm, E. and Arkin, A.P. (2003). Biological networks, Current Opinion in Structural Biology13(2): 193–202.10.1016/S0959-440X(03)00031-9Search in Google Scholar

Altuntaş, V. and Gök, M. (2017). The stability and fragility of biological networks: Eukaryotic model organism saccharomyces cerevisiae, International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, pp. 116–118.Search in Google Scholar

Altuntaş, V. and Gök, M. (2020). Protein–protein etkileşimi tespit yöntemleri, veri tabanları ve veri güvenilirliği, Avrupa Bilim ve Teknoloji Dergisi (19): 722–733.10.31590/ejosat.724390Search in Google Scholar

Altuntas, V., Gök, M. and Kahveci, T. (2018). Stability analysis of biological networks’ diffusion state, IEEE/ACM Transactions on Computational Biology and Bioinformatics11(4): 1406–1418.Search in Google Scholar

Borgatti, S.P. (2005). Centrality and network flow, Social Networks27(1): 55–71.10.1016/j.socnet.2004.11.008Search in Google Scholar

Can, T.,Çamoǧlu, O. and Singh, A.K. (2005). Analysis of protein-protein interaction networks using random walks, Proceedings of the 5th International Workshop on Bioinformatics, Chicago, IL, USA, pp. 61–68.Search in Google Scholar

Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series, Physica D: Nonlinear Phenomena110(1–2): 43–50.10.1016/S0167-2789(97)00118-8Search in Google Scholar

Cao, M., Zhang, H., Park, J., Daniels, N.M., Crovella, M.E., Cowen, L.J. and Hescott, B. (2013). Going the distance for protein function prediction: A new distance metric for protein interaction networks, PloS One8(10): e76339.10.1371/journal.pone.0076339380681024194834Search in Google Scholar

Chatr-Aryamontri, A., Breitkreutz, B.-J., Oughtred, R., Boucher, L., Heinicke, S., Chen, D., Stark, C., Breitkreutz, A., Kolas, N., O’Donnell, L., Reguly, T., Nixon, J., Ramage, L., Winter, A., Sellam, A., Chang, C., Hirschman, J., Theesfeld, C., Rust, J., Livstone, M.S., Dolinski, K. and Tyers, M. (2015). The BioGRID interaction database: 2015 Update, Nucleic Acids Research43(D1): D470–D478.10.1093/nar/gku1204438398425428363Search in Google Scholar

Cho, H., Berger, B. and Peng, J. (2015). Diffusion component analysis: Unraveling functional topology in biological networks, International Conference on Research in Computational Molecular Biology, Warsaw, Poland, pp. 62–64.Search in Google Scholar

Erten, S., Bebek, G. and Koyutürk, M. (2011). VAVIEN: An algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks, Journal of Computational Biology18(11): 1561–1574.10.1089/cmb.2011.0154321610022035267Search in Google Scholar

Freeman, L.C. (1977). A set of measures of centrality based on betweenness, Sociometry40(1): 35–41.10.2307/3033543Search in Google Scholar

Freeman, L.C., Borgatti, S.P. and White, D.R. (1991). Centrality in valued graphs: A measure of betweenness based on network flow, Social Networks13(2): 141–154.10.1016/0378-8733(91)90017-NSearch in Google Scholar

Gabr, H. and Kahveci, T. (2015). Signal reachability facilitates characterization of probabilistic signaling networks, BMC Bioinformatics16(17): S6.10.1186/1471-2105-16-S17-S6467488126679404Search in Google Scholar

Gabr, H., Rivera-Mulia, J.C., Gilbert, D.M. and Kahveci, T. (2015). Computing interaction probabilities in signaling networks, EURASIP Journal on Bioinformatics and Systems Biology2015(1): 10.10.1186/s13637-015-0031-8464259926587014Search in Google Scholar

Gao, J. (2012). Multiscale analysis of biological data by scale-dependent Lyapunov exponent, Frontiers in Physiology2: 110.10.3389/fphys.2011.00110326495122291653Search in Google Scholar

Gök, M., Koçal, O.H. and Genç, S. (2016). Prediction of disordered regions in proteins using physicochemical properties of amino acids, International Journal of Peptide Research and Therapeutics22(1): 31–36.10.1007/s10989-015-9481-9Search in Google Scholar

Hagberg, A., Swart, P. and Schult, D. (2008). Exploring network structure, dynamics, and function using network, Technical report, Los Alamos National Lab., Los Alamos, NM.Search in Google Scholar

Han, Q. and Wang, P. (2007). Estimation of the largest Lyapunov exponent of the HRV signals, Journal of Biomedical Engineering24(4): 732–735.Search in Google Scholar

He, H., Lin, D., Zhang, J., Wang, Y.-P. and Deng, H.-W. (2017). Comparison of statistical methods for subnetwork detection in the integration of gene expression and protein interaction network, BMC Bioinformatics18(1), Article no. 149.Search in Google Scholar

Hegger, R., Kantz, H. and Schreiber, T. (1999). Practical implementation of nonlinear time series methods: The TISEAN package, Chaos: An Interdisciplinary Journal of Nonlinear Science9(2): 413–435.10.1063/1.16642412779839Search in Google Scholar

Holme, P., Kim, B.J., Yoon, C.N. and Han, S.K. (2002). Attack vulnerability of complex networks, Physical Review E65(5): 056109.10.1103/PhysRevE.65.05610912059649Search in Google Scholar

Jeong, H., Qian, X. and Yoon, B.-J. (2016). Effective comparative analysis of protein–protein interaction networks by measuring the steady-state network flow using a Markov model, BMC Bioinformatics17(13): 395.10.1186/s12859-016-1215-2507394527766938Search in Google Scholar

Kennel, M.B., Brown, R. and Abarbanel, H.D. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction, Physical Review A45(6): 3403.10.1103/PhysRevA.45.3403Search in Google Scholar

Koçal, O.H., Yuruklu, E. and Avcibas, I. (2008). Chaotic-type features for speech steganalysis, IEEE Transactions on Information Forensics and Security3(4): 651–661.10.1109/TIFS.2008.2004289Search in Google Scholar

Köhler, S., Bauer, S., Horn, D. and Robinson, P.N. (2008). Walking the interactome for prioritization of candidate disease genes, The American Journal of Human Genetics82(4): 949–958.10.1016/j.ajhg.2008.02.013242725718371930Search in Google Scholar

Li, F., Li, P., Xu, W., Peng, Y., Bo, X. and Wang, S. (2010). Perturbationanalyzer: A tool for investigating the effects of concentration perturbation on protein interaction networks, Bioinformatics26(2): 275–277.10.1093/bioinformatics/btp63419914922Search in Google Scholar

Li, Y., Wang, H. and Meng, X. (2019). Almost periodic synchronization of fuzzy cellular neural networks with time-varying delays via state-feedback and impulsive control, International Journal of Applied Mathematics and Computer Science29(2): 337–349, DOI: 10.2478/amcs-2019-0025.10.2478/amcs-2019-0025Search in Google Scholar

Liu, K., Wang, H. and Xiao, J. (2015). The multivariate largest Lyapunov exponent as an age-related metric of quiet standing balance, Computational and Mathematical Methods in Medicine2015, Article ID 309756.10.1155/2015/309756444393726064182Search in Google Scholar

Nazarimehr, F., Jafari, S., Golpayegani, S.M.R.H. and Sprott, J. (2017). Can Lyapunov exponent predict critical transitions in biological systems?, Nonlinear Dynamics88(2): 1493–1500.10.1007/s11071-016-3325-9Search in Google Scholar

Newman, M. (2018). Networks, Oxford University Press, Oxford.10.1093/oso/9780198805090.001.0001Search in Google Scholar

Perez, C. and Germon, R. (2016). Graph creation and analysis for linking actors: Application to social data, in R. Layton and P. Watters (Eds), Automating Open Source Intelligence, Elsevier, Waltham, pp. 103–129.10.1016/B978-0-12-802916-9.00007-5Search in Google Scholar

Ruiz, D. and Finke, J. (2019). Lyapunov-based anomaly detection in preferential attachment networks, International Journal of Applied Mathematics and Computer Science29(2): 363–373, DOI: 10.2478/amcs-2019-0027.10.2478/amcs-2019-0027Search in Google Scholar

Sano, M. and Sawada, Y. (1985). Measurement of the Lyapunov spectrum from a chaotic time series, Physical Review Letters55(10): 1082.10.1103/PhysRevLett.55.108210031723Search in Google Scholar

Serletis, A., Shahmoradi, A. and Serletis, D. (2007). Effect of noise on estimation of Lyapunov exponents from a time series, Chaos, Solitons & Fractals32(2): 883–887.10.1016/j.chaos.2005.11.048Search in Google Scholar

Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J. and Doyle, J. (2004). Robustness of cellular functions, Cell118(6): 675–685.10.1016/j.cell.2004.09.00815369668Search in Google Scholar

Stumpf, M.P. and Wiuf, C. (2010). Incomplete and noisy network data as a percolation process, Journal of the Royal Society Interface7(51): 1411–1419.10.1098/rsif.2010.0044293560020378609Search in Google Scholar

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., Kuhn, M., Bork, P., Jensen, L.J., von Mering, C. (2014). STRING v10: Protein–protein interaction networks, integrated over the tree of life, Nucleic Acids Research43(D1): D447–D452.10.1093/nar/gku1003438387425352553Search in Google Scholar

Turinsky, A.L., Razick, S., Turner, B., Donaldson, I.M. and Wodak, S.J. (2010). Literature curation of protein interactions: Measuring agreement across major public databases, Database2010: baq026, DOI:10.1093/database /baq026.Search in Google Scholar

Vocaturo, E. and Veltri, P. (2017). On the use of networks in biomedicine, Procedia Computer Science110: 498–503.10.1016/j.procs.2017.06.132Search in Google Scholar

Watts, D.J. and Strogatz, S.H. (1998). Collective dynamics of ‘small-world’ networks, Nature393(6684): 440.10.1038/309189623998Search in Google Scholar

Yu, D., Kim, M., Xiao, G. and Hwang, T.H. (2013). Review of biological network data and its applications, Genomics & Informatics11(4): 200–210.10.5808/GI.2013.11.4.200389784724465231Search in Google Scholar

Zhang, X., Wang, H. and Yang, Y. (2016). Robustness of indispensable nodes in controlling protein–protein interaction network, arXiv: 1609.02637.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo