Using machine learning techniques to reconstruct the signal observed by the GRACE mission based on AMSR-E microwave data
30 kwi 2024
O artykule
Data publikacji: 30 kwi 2024
Zakres stron: 80 - 86
Otrzymano: 20 sty 2024
Przyjęty: 21 kwi 2024
DOI: https://doi.org/10.2478/mgrsd-2023-0033
Słowa kluczowe
© 2024 Viktor Szabó et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

The achieved results on the test data sample
Extra Trees Regressor | 0.035 | 0.757 | 50.9 | 378700.0 | 0.243 | 75.7 |
Extreme Gradient Boosting | 0.037 | 0.739 | 48.9 | 369350.0 | 0.262 | 73.9 |
K Neighbors Regressor | 0.038 | 0.725 | 47.7 | 362450.0 | 0.275 | 72.5 |
Light Gradient Boosting Machine | 0.038 | 0.715 | 46.7 | 357750.0 | 0.285 | 71.5 |
Decision Tree Regressor | 0.048 | 0.546 | 32.8 | 273000.0 | 0.454 | 54.6 |
Gradient Boosting Regressor | 0.052 | 0.469 | 27.3 | 234600.0 | 0.531 | 46.9 |
Linear Regression | 0.069 | 0.074 | 3.9 | 36950.0 | 0.926 | 7.4 |
Least Angle Regression | 0.069 | 0.074 | 3.9 | 36950.0 | 0.926 | 7.4 |
Bayesian Ridge | 0.069 | 0.074 | 3.9 | 36900.0 | 0.926 | 7.4 |
Ridge Regression | 0.069 | 0.068 | 3.7 | 34150.0 | 0.932 | 6.8 |
Huber Regressor | 0.070 | 0.062 | 3.2 | 31000.0 | 0.938 | 6.2 |
Orthogonal Matching Pursuit | 0.072 | 0.000 | 0.2 | 50.0 | 1.000 | 0.0 |
Lasso Regression | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
Elastic Net | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
Lasso Least Angle Regression | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
Dummy Regressor | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
AdaBoost Regressor | 0.073 | −0.021 | −0.9 | −10450.0 | 1.021 | −2.1 |
Passive Aggressive Regressor | 0.086 | −0.485 | −20.0 | −242550.0 | 1.485 | −48.5 |
sin+cos semiannual function | 0.095 | 0.000 | −32.7 | 0.0 | 1.000 | 0.0 |