Using machine learning techniques to reconstruct the signal observed by the GRACE mission based on AMSR-E microwave data
30 apr 2024
INFORMAZIONI SU QUESTO ARTICOLO
Pubblicato online: 30 apr 2024
Pagine: 80 - 86
Ricevuto: 20 gen 2024
Accettato: 21 apr 2024
DOI: https://doi.org/10.2478/mgrsd-2023-0033
Parole chiave
© 2024 Viktor Szabó et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

The achieved results on the test data sample
Extra Trees Regressor | 0.035 | 0.757 | 50.9 | 378700.0 | 0.243 | 75.7 |
Extreme Gradient Boosting | 0.037 | 0.739 | 48.9 | 369350.0 | 0.262 | 73.9 |
K Neighbors Regressor | 0.038 | 0.725 | 47.7 | 362450.0 | 0.275 | 72.5 |
Light Gradient Boosting Machine | 0.038 | 0.715 | 46.7 | 357750.0 | 0.285 | 71.5 |
Decision Tree Regressor | 0.048 | 0.546 | 32.8 | 273000.0 | 0.454 | 54.6 |
Gradient Boosting Regressor | 0.052 | 0.469 | 27.3 | 234600.0 | 0.531 | 46.9 |
Linear Regression | 0.069 | 0.074 | 3.9 | 36950.0 | 0.926 | 7.4 |
Least Angle Regression | 0.069 | 0.074 | 3.9 | 36950.0 | 0.926 | 7.4 |
Bayesian Ridge | 0.069 | 0.074 | 3.9 | 36900.0 | 0.926 | 7.4 |
Ridge Regression | 0.069 | 0.068 | 3.7 | 34150.0 | 0.932 | 6.8 |
Huber Regressor | 0.070 | 0.062 | 3.2 | 31000.0 | 0.938 | 6.2 |
Orthogonal Matching Pursuit | 0.072 | 0.000 | 0.2 | 50.0 | 1.000 | 0.0 |
Lasso Regression | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
Elastic Net | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
Lasso Least Angle Regression | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
Dummy Regressor | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
AdaBoost Regressor | 0.073 | −0.021 | −0.9 | −10450.0 | 1.021 | −2.1 |
Passive Aggressive Regressor | 0.086 | −0.485 | −20.0 | −242550.0 | 1.485 | −48.5 |
sin+cos semiannual function | 0.095 | 0.000 | −32.7 | 0.0 | 1.000 | 0.0 |