Using machine learning techniques to reconstruct the signal observed by the GRACE mission based on AMSR-E microwave data
30 avr. 2024
À propos de cet article
Publié en ligne: 30 avr. 2024
Pages: 80 - 86
Reçu: 20 janv. 2024
Accepté: 21 avr. 2024
DOI: https://doi.org/10.2478/mgrsd-2023-0033
Mots clés
© 2024 Viktor Szabó et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

The achieved results on the test data sample
Extra Trees Regressor | 0.035 | 0.757 | 50.9 | 378700.0 | 0.243 | 75.7 |
Extreme Gradient Boosting | 0.037 | 0.739 | 48.9 | 369350.0 | 0.262 | 73.9 |
K Neighbors Regressor | 0.038 | 0.725 | 47.7 | 362450.0 | 0.275 | 72.5 |
Light Gradient Boosting Machine | 0.038 | 0.715 | 46.7 | 357750.0 | 0.285 | 71.5 |
Decision Tree Regressor | 0.048 | 0.546 | 32.8 | 273000.0 | 0.454 | 54.6 |
Gradient Boosting Regressor | 0.052 | 0.469 | 27.3 | 234600.0 | 0.531 | 46.9 |
Linear Regression | 0.069 | 0.074 | 3.9 | 36950.0 | 0.926 | 7.4 |
Least Angle Regression | 0.069 | 0.074 | 3.9 | 36950.0 | 0.926 | 7.4 |
Bayesian Ridge | 0.069 | 0.074 | 3.9 | 36900.0 | 0.926 | 7.4 |
Ridge Regression | 0.069 | 0.068 | 3.7 | 34150.0 | 0.932 | 6.8 |
Huber Regressor | 0.070 | 0.062 | 3.2 | 31000.0 | 0.938 | 6.2 |
Orthogonal Matching Pursuit | 0.072 | 0.000 | 0.2 | 50.0 | 1.000 | 0.0 |
Lasso Regression | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
Elastic Net | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
Lasso Least Angle Regression | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
Dummy Regressor | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
AdaBoost Regressor | 0.073 | −0.021 | −0.9 | −10450.0 | 1.021 | −2.1 |
Passive Aggressive Regressor | 0.086 | −0.485 | −20.0 | −242550.0 | 1.485 | −48.5 |
sin+cos semiannual function | 0.095 | 0.000 | −32.7 | 0.0 | 1.000 | 0.0 |