Using machine learning techniques to reconstruct the signal observed by the GRACE mission based on AMSR-E microwave data
30 abr 2024
Acerca de este artículo
Publicado en línea: 30 abr 2024
Páginas: 80 - 86
Recibido: 20 ene 2024
Aceptado: 21 abr 2024
DOI: https://doi.org/10.2478/mgrsd-2023-0033
Palabras clave
© 2024 Viktor Szabó et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

The achieved results on the test data sample
Extra Trees Regressor | 0.035 | 0.757 | 50.9 | 378700.0 | 0.243 | 75.7 |
Extreme Gradient Boosting | 0.037 | 0.739 | 48.9 | 369350.0 | 0.262 | 73.9 |
K Neighbors Regressor | 0.038 | 0.725 | 47.7 | 362450.0 | 0.275 | 72.5 |
Light Gradient Boosting Machine | 0.038 | 0.715 | 46.7 | 357750.0 | 0.285 | 71.5 |
Decision Tree Regressor | 0.048 | 0.546 | 32.8 | 273000.0 | 0.454 | 54.6 |
Gradient Boosting Regressor | 0.052 | 0.469 | 27.3 | 234600.0 | 0.531 | 46.9 |
Linear Regression | 0.069 | 0.074 | 3.9 | 36950.0 | 0.926 | 7.4 |
Least Angle Regression | 0.069 | 0.074 | 3.9 | 36950.0 | 0.926 | 7.4 |
Bayesian Ridge | 0.069 | 0.074 | 3.9 | 36900.0 | 0.926 | 7.4 |
Ridge Regression | 0.069 | 0.068 | 3.7 | 34150.0 | 0.932 | 6.8 |
Huber Regressor | 0.070 | 0.062 | 3.2 | 31000.0 | 0.938 | 6.2 |
Orthogonal Matching Pursuit | 0.072 | 0.000 | 0.2 | 50.0 | 1.000 | 0.0 |
Lasso Regression | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
Elastic Net | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
Lasso Least Angle Regression | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
Dummy Regressor | 0.072 | −0.001 | 0.2 | −150.0 | 1.001 | 0.0 |
AdaBoost Regressor | 0.073 | −0.021 | −0.9 | −10450.0 | 1.021 | −2.1 |
Passive Aggressive Regressor | 0.086 | −0.485 | −20.0 | −242550.0 | 1.485 | −48.5 |
sin+cos semiannual function | 0.095 | 0.000 | −32.7 | 0.0 | 1.000 | 0.0 |