- Zeitschriftendaten
- Format
- Zeitschrift
- eISSN
- 1338-4333
- Erstveröffentlichung
- 28 Mar 2009
- Erscheinungsweise
- 4 Hefte pro Jahr
- Sprachen
- Englisch
Suche
- Uneingeschränkter Zugang
How various mulch materials can affect the soil hydro-physical properties
Seitenbereich: 269 - 275
Zusammenfassung
An application of different mulch materials may lead to changes in soil properties. Our previous study, focused on the impact of various mulches during the 4-year period, showed that the change in some properties can be very rapid (e.g., soil pH), but in other cases such as hydraulic properties, the changes can be gradual. To find out, whether the extension of the mulching period will further affect the studied soil properties, the experiment continued for another 2 years. Differences between values of organic carbon content (Cox), soil physical quality (
Schlüsselwörter
- Mulch
- Aggregate stability
- Soil hydraulic properties
- Soil physical quality
- Repellency index
- Readily available water
- Uneingeschränkter Zugang
The impact of treated wastewater and biosolids from the municipal wastewater treatment plant on water and carbon dioxide effluxes from soils
Seitenbereich: 276 - 283
Zusammenfassung
The goal of this study was to evaluate the effect of products from a municipal wastewater treatment plant on the H2O and CO2 effluxes from two soils. The net H2O and CO2 effluxes were measured at the surface of nine beds with two different soils (Cambisol and Arenosol) and two crops (maize or vegetables). Soils in some beds were amended with stabilized sewage sludge (bed with Cambisol and maize) or composted sewage sludge (two beds with Cambisol and both crops) or were irrigated with treated wastewater (two beds with Cambisol and both crops, and one bed with Arenosol and vegetable). Remaining beds were irrigated with tap water (two beds with Cambisol and both crops, and one bed with Arenosol and vegetable). While stabilized and composted sewage sludge positively affected the CO2 emission, the effect of treated wastewater was not confirmed. Different treatments had negligible effect on the water efflux, which was mainly affected by the plant canopy that influence the temperature of the soil surface. Statistical analyses showed that trends of the CO2 efflux with respect to various scenarios measured on different days changed during the season. No significant correlations were found between the average H2O and CO2 effluxes and measured soil properties.
Schlüsselwörter
- Soil respiration
- Sewage sludge
- Composted sewage sludge
- Irrigation
- Soil properties
- Uneingeschränkter Zugang
Long-term soil water content dynamics under different land uses in a small agricultural catchment
Seitenbereich: 284 - 294
Zusammenfassung
Longer term monitoring of soil water content at a catchment scale is a key to understanding its dynamics, which can assist stakeholders in decision making processes, such as land use change or irrigation programs. Soil water monitoring in agriculturally dominated catchments can help in developing soil water retention measurements, for assessment of land use change, or adaptation of specific land management systems to climate change. The present study was carried out in the Pannonian region (Upper-Balaton, Hungary) on Cambisols and Calcisols between 2015 and 2021. Soil water content (SWC) dynamics were investigated under different land use types (vineyard, grassland, and forest) at three depths (15, 40, and 70 cm). The meteorological data show a continuous decrease in cumulative precipitation over time during the study with an average of 26% decrease observed between 2016 and 2020, while average air temperatures were similar for all the studied years. Corresponding to the lower precipitation amounts, a clear decrease in the average SWC was observed at all the land use sites, with 13.4%, 37.7%, and 29.3% lower average SWC for the grassland, forest, and vineyard sites, respectively, from 2016 to 2020 (measured at the 15 cm depth of the soil). Significant differences in SWC were observed between the annual and seasonal numbers within a given land use (
Schlüsselwörter
- Forest
- Grassland
- Soil water regime
- Vineyard
- Climate change
- Uneingeschränkter Zugang
The effects of satellite soil moisture data on the parametrization of topsoil and root zone soil moisture in a conceptual hydrological model
Seitenbereich: 295 - 307
Zusammenfassung
In a previous study, the topsoil and root zone ASCAT satellite soil moisture data were implemented into three multi-objective calibration approaches of the TUW hydrological model in 209 Austrian catchments. This paper examines the model parametrization in those catchments, which in the validation of the dual-layer conceptual semi-distributed model showed improvement in the runoff simulation efficiency compared to the single objective runoff calibration. The runoff simulation efficiency of the three multi-objective approaches was separately considered. Inferences about the specific location and the physiographic properties of the catchments where the inclusion of ASCAT data proved beneficial were made. Improvements were primarily observed in the watersheds with lower slopes (median of the catchment slope less than 15 per cent) and a higher proportion of farming land use (median of the proportion of agricultural land above 20 per cent), as well as in catchments where the runoff is not significantly influenced by snowmelt and glacier runoff. Changes in the mean and variability of the field capacity parameter FC of the soil moisture regime were analysed. The values of FC decreased by 20 per cent on average. Consequently, the catchments’ water balance closure generally improved by the increase in catchment evapotranspiration during the validation period. Improvements in model efficiency could be attributed to better runoff simulation in the spring and autumn month. The findings refine recommendations regarding when hydrological modelling could consider satellite soil moisture data added to runoff signatures in calibration useful.
Schlüsselwörter
- ASCAT
- TUW model
- Soil moisture
- Multi-objective calibration
- Parameter uncertainty
- Uneingeschränkter Zugang
The soil moisture regime and groundwater recharge in aged forests in the Sand Ridge region of Hungary after a decline in the groundwater level: an experimental case study
Seitenbereich: 308 - 320
Zusammenfassung
The decline in groundwater levels is a cause of concern in many regions of the world, including the Sand Ridge of Hungary. The causes of the regional depletion range from rising air temperatures, changes in precipitation, domestic and agricultural groundwater use and past amelioration and recent afforestation, including the effects of drilling for crude oil exploration. The relations between the decline, the soil water regime and groundwater recharge under existing aged forests remained unclear thus far. Based on our monitoring of groundwater and soil moisture we aim to clarify this interplay in a new experimental site on the hilltop of the Sand Ridge. We compared three land-uses: a 41-year-old black locust (
Schlüsselwörter
- Recharge
- Groundwater decline
- Soil moisture monitoring
- Forest hydrology
- Black locust
- Black pine
- Uneingeschränkter Zugang
Effect of microplastics on silty loam soil properties and radish growth
Seitenbereich: 321 - 329
Zusammenfassung
Microplastics (particles of plastics <5 mm) affect the physical, biological and hydrological properties of agricultural soil, as well as crop growth. We investigated the effect of the addition of three microplastics (high-density polyethylene (HDPE), polyvinyl chloride (PVC), and polystyrene (PS)) at a concentration of 5% (w/w) to a silty loam soil on selected soil properties and growth of radish (
The growth of radish was characterized by the plant biomass and effective quantum yield of Photosystem II (Y (II)). We did not find a statistically significant difference in the total biomass of radish between any of the experimental treatments, maybe due to used concentration of microplastics. The mean value of Y (II) was significantly higher in all microplastic treatments compared to control only within the last measurement at the end of the GP. A statistically significant change of Y(II) in all microplastic treatments may indicate functional shift in soil properties; however, the measured values of the soil characteristics have not shown the significant changes (except for the bulk density values in all microplastic treatments and hydraulic conductivity together with sorptivity in HDPE treatment within the measurement at the end of GP).
Schlüsselwörter
- Microplastics
- Silty loam soil
- Radish
- Soil properties
- Uneingeschränkter Zugang
Calibration of an Arduino-based low-cost capacitive soil moisture sensor for smart agriculture
Seitenbereich: 330 - 340
Zusammenfassung
Agriculture faces several challenges to use the available resources in a more environmentally sustainable manner. One of the most significant is to develop sustainable water management. The modern Internet of Things (IoT) techniques with real-time data collection and visualisation can play an important role in monitoring the readily available moisture in the soil. An automated Arduino-based low-cost capacitive soil moisture sensor has been calibrated and developed for data acquisition. A sensor- and soil-specific calibration was performed for the soil moisture sensors (SKU:SEN0193 - DFROBOT, Shanghai, China). A Repeatability and Reproducibility study was conducted by range of mean methods on clay loam, sandy loam and silt loam soil textures. The calibration process was based on the data provided by the capacitive sensors and the continuously and parallelly measured soil moisture content by the thermogravimetric method. It can be stated that the response of the sensors to changes in soil moisture differs from each other, which was also greatly influenced by different soil textures. Therefore, the calibration according to soil texture was required to ensure adequate measurement accuracy. After the calibration, it was found that a polynomial calibration function (R2 ≥ 0.89) was the most appropriate way for modelling the behaviour of the sensors at different soil textures.
Schlüsselwörter
- IoT
- Precision Agriculture
- Low-cost capacitive soil moisture sensor
- Thermo-gravimetric method
- Repeatability and Reproducibility study
- Non-linear regression
- Uneingeschränkter Zugang
Applied methodology based on HEC-HMS for reservoir filling estimation due to soil erosion
Seitenbereich: 341 - 356
Zusammenfassung
Authors propose a beneficial methodology for hydrological planning in their study. Prospective evaluations of the basins’ net capacity can be done using the technique presented. The HEC-HMS (Hydrologic Modelling System) software can be used to estimate in a basin, the sediment emitted. For a certain precipitation, this methodology allows estimating, within a certain range, the gradual blockage of a reservoir, and even a projected date for total blockage. This has some applications to adopt corrective measures that prevent or delay the planned blockage deadlines. The model is of the semi-distributed type, estimating the generation and emission of sediments by sub-basins. The integration of different return periods in HEC-HMS with a semi-distributed model by sub-basins and the application of a mathematical model are the differentiating element of this research. The novelty of this work is to allow prognosing the reservoir sedimentation rate of basins in a local and regional scale with a medium and large temporary framework. The developed methodology allows public institutions to take decisions concerning hydrological planning. It has been applied to the case of “Charco Redondo” reservoir, in Cádiz, Andalusia, in southern Spain. Applying the methodology to this case, an average soil degradation of the reservoir basin has been estimated. Therefore, it is verified that in 50 years the reservoir is expected to lose 8.4% of its capacity.
Schlüsselwörter
- Soil loss
- HEC-HMS
- Sediments
- USLE
- MUSLE
- Return period
- Uneingeschränkter Zugang
Impact of reconfiguration on the flow downstream of a flexible foliated plant
Seitenbereich: 357 - 375
Zusammenfassung
This paper explores the impacts of reconfiguration and leaf morphology on the flow downstream of a flexible foliated plant. 3D acoustic Doppler velocimetry and particle image velocimetry were used to experimentally investigate the hydrodynamic interaction between a foliated plant and the flow, testing two plants with different leaves morphology under different bulk flow velocities. The model vegetation was representative of riparian vegetation species in terms of plants hydrodynamic behavior and leaf to stem area ratio. To explore the effects of the seasonal variability of vegetation on the flow structure, leafless conditions were tested. Reconfiguration resulted in a decrease of the frontal projected area of the plants up to the 80% relative to the undeformed value. Such changes in plant frontal area markedly affected the spatial distributions of mean velocity and turbulence intensities, altering the local exchanges of momentum. At increasing reconfiguration, the different plant morphology influenced the mean and turbulent wake width. The leafless stem exhibited a rigid behavior, with the flow in the wake being comparable to that downstream of a rigid cylinder. The study revealed that the flexibility-induced reconfiguration of plants can markedly affect the local distribution of flow properties in the wake, potentially affecting transport processes at the scale of the plant and its subparts.
Schlüsselwörter
- Flow-vegetation interaction
- Riparian vegetation
- Plant reconfiguration
- Leaf morphology
- Turbulence
- Particle image velocimetry
- Acoustic Doppler velocimetry
- Uneingeschränkter Zugang
A new small-scale experimental device for testing backward erosion piping
Seitenbereich: 376 - 384
Zusammenfassung
Backward erosion piping is driven by seepage forces acting on the soil grains at the downstream end of the seepage path. A new device for the laboratory testing of backward erosion progression was developed and tested. The device consists of a plexiglass prism at which the seepage path has been predefined. The prism was equipped with an inflow consisting of gravel separated from tested sand by a strainer. The hydraulic gradient along the seepage pipe was observed by a set of piezometers and pressure cells, and the seepage discharge was measured volumetrically. The transported sediment was trapped in a vertical cone located downstream from the device. The progression of the seepage path, the piezometric heads and the trapped material was observed by two synchronous cameras. 15 trial tests have been carried out to date, and from these, the interim results are presented.
Schlüsselwörter
- Backward erosion piping
- Seepage
- Experimental research
- Critical hydraulic gradient