1. bookVolumen 70 (2022): Heft 3 (September 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-4333
Erstveröffentlichung
28 Mar 2009
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Calibration of an Arduino-based low-cost capacitive soil moisture sensor for smart agriculture

Online veröffentlicht: 23 Aug 2022
Volumen & Heft: Volumen 70 (2022) - Heft 3 (September 2022)
Seitenbereich: 330 - 340
Eingereicht: 03 Aug 2021
Akzeptiert: 28 Apr 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-4333
Erstveröffentlichung
28 Mar 2009
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Altese, E., Bolognani, O., Mancini, M., Troch, P.A., 1996. Retrieving soil moisture over bare soil from ERS 1 Synthetic Aperture Radar data: Sensitivity analysis based on a theoretical surface scattering model and field data. Water Resources Research, 32, 3, 653–661.10.1029/95WR03638 Search in Google Scholar

Arsoy, S., Ozgur, M., Keskin, E., Yilmaz, C., 2013. Usability of calcium carbide gas pressure method in hydrological sciences. Journal of Hydrology, 503, 1, 67–76.10.1016/j.jhydrol.2013.08.044 Search in Google Scholar

ASTM D2216-98, 1998. Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, West Conshohocken, PA. www.astm.org Search in Google Scholar

Bitelli, M., 2011. Measuring soil water content: A review. HortTechnology, 21, 3, 293–300.10.21273/HORTTECH.21.3.293 Search in Google Scholar

Black, C.A., 1965. Methods of Soil Analysis: Part I, Physical and mineralogical properties. American Society of Agronomy, Madison, Wisconsin.10.2134/agronmonogr9.1 Search in Google Scholar

Burkholder, R.J., Johnson, J.T., Sanamzadeh, M., Tsang, L., Tan, S., 2017. Microwave thermal emission characteristics of a two-layer medium with rough interfaces using the second-order small perturbation method. IEEE Transactions on Geoscience and Remote Sensing, 14, 10, 1780–1784.10.1109/LGRS.2017.2735421 Search in Google Scholar

Chartzoulakisa, K., Bertaki, M., 2015. Sustainable water management in agriculture under climate change. Agriculture and Agricultural Science Procedia, 4, 1, 88–98.10.1016/j.aaspro.2015.03.011 Search in Google Scholar

Chaudhari, P.R., Ahire, D.V., Ahire, V.D., Chkravarty, M. and Maity, S., 2013. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. International Journal of Scientific and Research Publications, 3, 1–8. Search in Google Scholar

Dominguez-Nino, J.M., Bogena, H.R., Huisman, J.A., Schilling, B., Casadesús, J., 2019. On the accuracy of factory-calibrated low-cost soil water content sensors. Sensors, 19, 1, 1–18.10.3390/s19143101667957231337053 Search in Google Scholar

Elder, A.N., Rasmussen, T.C., 1994. Neutron probe calibration in unsaturated tuff. Soil Science Society of America Journal, 58, 5, 1301–1307.10.2136/sssaj1994.03615995005800050004x Search in Google Scholar

Fereres, E., Soriano, M.A., 2007. Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58, 2, 147–159.10.1093/jxb/erl16517088360 Search in Google Scholar

Gaikwad, S.V., Vibhute, A.D., Kale, K.V., Mehrotra, S.C., 2021. An innovative IoT based system for precision farming. Computers and Electronics in Agriculture, 187, 1, 106291.10.1016/j.compag.2021.106291 Search in Google Scholar

Gao, L., Wang, Y., Geris, J., Hallett, P.D., Peng, X., 2019. The role of sampling strategy on apparent temporal stability of soil moisture under subtropical hydroclimatic conditions. Journal of Hydrology and Hydromechanics, 67, 260–270.10.2478/johh-2019-0006 Search in Google Scholar

González-Buesa, J., Salvador, M.L., 2019. An Arduino-based low-cost device for the measurement of the respiration rates of fruits and vegetables. Computers and Electronics in Agriculture, 162, 1, 14–20.10.1016/j.compag.2019.03.029 Search in Google Scholar

González-Teruel, J.D., Torres-Sánchez, R., Blaya-Ros, P.J., Toledo-Moreo, A.B., Jiménez-Buendía, M., Soto-Valles, F., 2018. Design and calibration of a low-cost SDI-12 soil moisture sensor. Sensors, 19, 3, 1–16.10.3390/s19030491638735630691025 Search in Google Scholar

Hamidov, A., Helming, K., 2020. Sustainability considerations in water-energy-food nexus research in irrigated agriculture. Sustainability, 12, 6274, 1–20.10.3390/su12156274 Search in Google Scholar

Jones, S.B., Blonquist, J.M., Robinson, D.A., Rasmussen, V.P., Or, D., 2005. Standardizing characterization of electromagnetic water content sensors: Part 1. Methodology. Vadose Zone Journal, 4, 1, 1048–1058.10.2136/vzj2004.0140 Search in Google Scholar

Klocke, N.L., Fischbach, P.E., 1984. G84-690 Estimating Soil Moisture by Appearance and Feel. Historical Materials from University of Nebraska, Lincoln, Nebraska. Search in Google Scholar

Kulmány, I.M., Milics, G., 2017. A talaj elektromos vezetőképességén alapuló helyspecifikus menedzsmentzóna lehatárolása [Site-specific management zone delimitation based on soil electrical conductivity]. Agroinform Kft., Budapest, Hungary. (In Hungarian.) Search in Google Scholar

Lichner, L., Holko, L., Zhukova, N., Schacht, K., Rajkai, K., Fodor, N., Sándor, R., 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. Journal of Hydrology and Hydromechanics, 60, 309–318.10.2478/v10098-012-0027-y Search in Google Scholar

Ma, Y., Qu, L., Wang, W., Yang, X., Lei, T., 2016. Measuring soil water content through volume/mass replacement using a constant volume container. Geoderma, 271, 1, 42–49.10.1016/j.geoderma.2016.02.003 Search in Google Scholar

Mangiafico, S., 2021. Package ‘rcompanion’: Functions to Support Extension Education Program Evaluation. R package version 2.4.1.https://cran.r-project.org/web/packages/rcompanion/rcompanion.pdf Search in Google Scholar

Montgomery, D.C, Runger, G.C., 1993. Gauge capability analysis and designed experiments. Part I: basic methods. Quality Engineering, 6, 1, 115–135.10.1080/08982119308918710 Search in Google Scholar

Nagahage, E.A., Nagahage, I.S.,Fujino, T., 2019. Calibration and validation of a low-cost capacitive moisture sensor to integrate the automated soil moisture monitoring system. Agriculture, 9, 7, 1–10.10.3390/agriculture9070141 Search in Google Scholar

Nyéki, A.É., 2016. A precíziós növénytermesztés és a fenntartható mezőgazdaság kapcsolata [Relationship between precision crop production and sustainable agriculture]. PhD dissertation, Mosonmagyaróvár, Hungary. Search in Google Scholar

Nyéki, A., Teschner, G., Ambrus, B., Neményi, M., Kovács, A.J., 2021. Architecting farmer-centric Internet of Things for precision crop production. Hungarian Agricultural Engineering, 38, 1, 71–78.10.17676/HAE.2020.38.71 Search in Google Scholar

Pelletier, M.G., Karthikeyan, S., Green, T.R., Schwartz, R.C., Wanjura, J.D., Holt, G.A., 2012. Soil moisture sensing vie swept frequency-based microwave sensors. Sensors, 12, 1, 753–767.10.3390/s120100753327923822368494 Search in Google Scholar

Placidi, P., Gasperini, L., Grassi, A., Cecconi, M., Scorzoni, A., 2020. Characterization of low-cost capacitive soil moisture sensors for IoT networks. Sensors, 20, 1, 1–14.10.3390/s20123585734889832630361 Search in Google Scholar

Pinel, N., Bastard, C.L., Bourlier, C., 2020. Modeling of EM wave coherent scattering from a rough multilayered medium with the scalar Kirchhoff approximation for GPR applications. IEEE Transactions on Geoscience and Remote Sensing, 58, 3, 1654–1664.10.1109/TGRS.2019.2947356 Search in Google Scholar

Rao, B.H., Singh, D.N., 2011. Moisture content determination by TDR and capacitance techniques: a comparative study. International Journal of Earth Sciences, 4, 6, 132–137. Search in Google Scholar

Rosenbaum, U., Huisman, J.A., Vrba, J., Vereecken, H., Bogena, H.R., 2011. Correction of temperature and electrical conductivity effects on dielectric permittivity measurements with ECH2O sensors. Vadose Zone Journal, 10, 1, 582–593.10.2136/vzj2010.0083 Search in Google Scholar

Rosenbaum, U., Huisman, J., Weuthen, A., Vereecken, H., Bogena, H., 2010. Sensor-to-sensor variability of the ECH2O EC-5, TE, and 5TE sensors in dielectric liquids. Vadose Zone Journal, 9, 1, 181–186.10.2136/vzj2009.0036 Search in Google Scholar

R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Austria. https://www.r-project.org. Search in Google Scholar

Ruiz-Garcia, L., Lunadei, L., Barreiro, P., Robla, I., 2009. A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors, 9, 6, 4728–4750.10.3390/s90604728329193622408551 Search in Google Scholar

Rusu, C., Krozer, A., Johansson, C., Ahrentorp, F., Pettersson, T., Jonasson, C., Rosevall, J., Ilver, D., Terzaghi, M., Chiatante D., Montagnoli, A., 2019. Miniaturized wireless water content and conductivity soil sensor system. Computers and Electronics in Agriculture, 167, 2, 105076.10.1016/j.compag.2019.105076 Search in Google Scholar

Schmugge, T.J., Jackson, T.J., McKim, H.L., 1980. Survey of methods for soil moisture determination. Water Resources Research, 16, 1, 961–979.10.1029/WR016i006p00961 Search in Google Scholar

Sekertekin, A., Marangoz, A.M., Abdikan, S., 2020. ALOS-2 and Sentinel-1 SAR data sensitivity analysis to surface soil moisture over bare and vegetated agricultural fields. Computers and Electronics in Agriculture, 171, 105303.10.1016/j.compag.2020.105303 Search in Google Scholar

Selig, E.T., Manusukhani, S., 1975. Relationship of soil moisture to the dielectric property. Journal of Geotechnical Engineering, 101, 8, 755–770.10.1061/AJGEB6.0000184 Search in Google Scholar

Soil Survey Staff, 2003. Keys to Soil Taxonomy (9th edn). US Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA. Search in Google Scholar

Su, S.L., Singh, D.N., Baghini, M.S., 2014. A critical review of soil moisture measurement. Measurement, 54, 1, 147–159.10.1016/j.measurement.2014.04.007 Search in Google Scholar

Topp, G.C., Davis, J.L., 1984. Measurement of soil water content using time-domain reflectometry (TDR): A field evaluation. Soil Science Society of America Journal, 49, 5, 19–24.10.2136/sssaj1985.03615995004900010003x Search in Google Scholar

Tsai, P., 1988. Variable gauge repeatability and reproducibility study using the analysis of variance method. Quality Engineering, 1, 1, 107–115.10.1080/08982118808962642 Search in Google Scholar

Vaz, C.M., Jones, S., Meding, M., Tuller, M., 2013. Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors. Vadose Zone Journal, 12, 2, 1–16.10.2136/vzj2012.0160 Search in Google Scholar

Visconti, F., de Paz, J.M., Martínez, D., Molina, M.J., 2014. Laboratory and field assessment of the capacitive sensors Decagon 10HS and 5TE for estimating the water content irrigated soils. Agricultural Water Management, 132, 1, 111–119.10.1016/j.agwat.2013.10.005 Search in Google Scholar

Wenner, F., 1915. A method of measuring earth resistivity. Journal of research of the National Bureau of Standards, 12, 1, 478–496.10.6028/bulletin.282 Search in Google Scholar

Wilson, R.G., 1971. Methods of measuring soil moisture. The Secretariat, Canadian National Committee for the International Hydrological Decade, Ottawa, Canada. Search in Google Scholar

Xue, R., Shen, P., Marschner, P., 2017. Soil water content during and after plant growth influence nutrient availability and microbial biomass. Journal of Soil Science and Plant Nutrition, 17, 3, 702–715.10.4067/S0718-95162017000300012 Search in Google Scholar

Zegelin, S., 1996. Soil Moisture Measurement, Field Measurement Techniques in Hydrology-Workshop Notes, Corpus Christi College, Clayton, pp. C1–C22. Search in Google Scholar

Zeri, M., Alvalá, S.R.C., Carneiro, R., Cunha-Zeri, G., Costa, J.M., Rossato Spatafora, L., Urbano, D., Vall-Llossera, M., Marengo, J., 2018. Tools for communicating agricultural drought over the Brazilian Semiarid using the soil moisture index. Water, 10, 1421.10.3390/w10101421 Search in Google Scholar

Zhang, N., Wang, M., Wang, N., 2002. Precision agriculture - A worldwide overview. Computers and Electronics in Agriculture, 36, 2–3, 113–132.10.1016/S0168-1699(02)00096-0 Search in Google Scholar

Zhang, R.-B., Guo, J.-J., Zhang, L., Zhang, Y.-C., Wang, L.-H., Wang, Q., 2011. A calibration method of detecting soil water content based on the information-sharing in wireless sensor network. Computers and Electronics in Agriculture, 76, 2, 161–168.10.1016/j.compag.2011.01.010 Search in Google Scholar

Zhang, L., Wu, F., Zheng, Y., Chen, L., Zhang, J., Li, X., 2018. Probabilistic calibration of a coupled hydro-mechanical slope stability model with the integration of multiple observations. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 12, 3, 169–182.10.1080/17499518.2018.1440317 Search in Google Scholar

Zhang, L., Li, H., Xue, Z., 2020. Calibrated integral equation model for bare soil moisture retrieval of synthetic aperture radar: A case study in Linze County. Applied Science, 10, 21, 7921. Search in Google Scholar

Zhu, L., Walker, J.P., Tsang, L., Huang, H., Ye, N., Rüdiger, C., 2019. Soil moisture retrieval from time series multi-angular radar data using a dry down constrain. Remote Sensing of Environment, 231, 111237.10.1016/j.rse.2019.111237 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo