Online veröffentlicht: 29 Oct 2018 Seitenbereich: 360 - 368
Zusammenfassung
Abstract
The extent (determined by the repellency indices RI and RIc) and persistence (determined by the water drop penetration time, WDPT) of soil water repellency (SWR) induced by pines were assessed in vastly different geographic regions. The actual SWR characteristics were estimated in situ in clay loam soil at Ciavolo, Italy (CiF), sandy soil at Culbin, United Kingdom (CuF), silty clay soil at Javea, Spain (JaF), and sandy soil at Sekule, Slovakia (SeF). For Culbin soil, the potential SWR characteristics were also determined after oven-drying at 60°C (CuD). For two of the three pine species considered, strong (Pinus pinaster at CiF) and severe (Pinus sylvestris at CuD and SeF) SWR conditions were observed. Pinus halepensis trees induced slight SWR at JaF site. RI and RIc increased in the order: JaF < CuF < CiF < CuD < SeF, reflecting nearly the same order of WDPT increase. A lognormal distribution fitted well to histograms of RIc data from CuF and JaF, whereas CiF, CuD and SeF had multimodal distributions. RI correlated closely with WDPT, which was used to develop a classification of RI that showed a robust statistical agreement with WDPT classification according to three different versions of Kappa coefficient.
Online veröffentlicht: 29 Oct 2018 Seitenbereich: 369 - 380
Zusammenfassung
Abstract
The application of Brilliant Blue FCF tracer enables to identify flow types in multi-domain porous systems of soils via analyses of morphologic parameters of stained objects occurring in dye pattern profiles, as they represent the footprint of flow processes which occurred in soil during both the infiltration and the redistribution of dye solution. We analysed the vertical dye pattern profiles exposed for different time lengths, and revealed temporal evolution of dye solution redistribution leading to changes in flow types. The field experiment was performed with the Brilliant Blue tracer (the 10 g l−1 concentration) applied on 1m x 1m surface of the Dystric Cambisol. The top litter horizon had been removed before 100 l of the tracer was applied. Four vertical profiles were excavated on the experimental plot (always 20 cm apart) at different times after the irrigation had been finished: 2 hours (CUT 2), 24 hours (CUT 24), 27 hours (CUT 27) and 504 hours (CUT 504). The analyses of the dyed patterns profiles showed the spatio-temporal changes in the dye coverage, surface area density, average BB concentration, and stained path width, which allowed us to specify three stages of dye solution redistribution history: (i) a stage of preferential macropore flow, (ii) a stage of strong interaction between macropore-domain and soil matrix leading to the generation of heterogeneous matrix flow and fingering flow types, and (iii) a final stage of dye redistribution within the soil body connected with leaching of BB caused by meteoric water. With increasing time, the macropore flow types convert to mostly matrix-dominated FTs in the upper part of the soil profile. These results were supported by soil hydrological modelling, which implied that more than 70% of the soil moisture profiles variability among CUT 2–CUT 504 could be explained by the time factor.
Online veröffentlicht: 29 Oct 2018 Seitenbereich: 381 - 392
Zusammenfassung
Abstract
In many Austrian catchments in recent decades an increase in the mean annual air temperature and precipitation has been observed, but only a small change in the mean annual runoff. The main objective of this paper is (1) to analyze alterations in the performance of a conceptual hydrological model when applied in changing climate conditions and (2) to assess the factors and model parameters that control these changes. A conceptual rainfall-runoff model (the TUW model) was calibrated and validated in 213 Austrian basins from 1981–2010. The changes in the runoff model’s efficiency have been compared with changes in the mean annual precipitation and air temperature and stratified for basins with dominant snowmelt and soil moisture processes. The results indicate that while the model’s efficiency in the calibration period has not changed over the decades, the values of the model’s parameters and hence the model’s performance (i.e., the volume error and the runoff model’s efficiency) in the validation period have changed. The changes in the model’s performance are greater in basins with a dominant soil moisture regime. For these basins, the average volume error which was not used in calibration has increased from 0% (in the calibration periods 1981–1990 or 2001–2010) to 9% (validation period 2001–2010) or –8% (validation period 1981–1990), respectively. In the snow-dominated basins, the model tends to slightly underestimate runoff volumes during its calibration (average volume error = –4%), but the changes in the validation periods are very small (i.e., the changes in the volume error are typically less than 1–2%). The model calibrated in a colder decade (e.g., 1981–1990) tends to overestimate the runoff in a warmer and wetter decade (e.g., 2001–2010), particularly in flatland basins. The opposite case (i.e., the use of parameters calibrated in a warmer decade for a colder, drier decade) indicates a tendency to underestimate runoff. A multidimensional analysis by regression trees showed that the change in the simulated runoff volume is clearly related to the change in precipitation, but the relationship is not linear in flatland basins. The main controlling factor of changes in simulated runoff volumes is the magnitude of the change in precipitation for both groups of basins. For basins with a dominant snowmelt runoff regime, the controlling factors are also the wetness of the basins and the mean annual precipitation. For basins with a soil moisture regime, landcover (forest) plays an important role.
Online veröffentlicht: 29 Oct 2018 Seitenbereich: 393 - 403
Zusammenfassung
Abstract
Several quite severe droughts occurred in Europe in the 21st century; three of them (2003, 2012 and 2015) hit also Slovakia. The Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration Index (SPEI) were used for assessment of meteorological drought occurrence. The research was established on discharge time series representing twelve river basins in Slovakia within the period 1981–2015. Sequent Peak Algorithm method based on fixed threshold, three parametric Weibull and generalized extreme values distribution GEV, factor and multiple regression analyses were employed to evaluate occurrence and parameters of hydrological drought in 2003, 2011–2012 and 2015, and the relationship among the water balance components. Results showed that drought parameters in evaluated river basins of Slovakia differed in respective years, most of the basins suffered more by 2003 and 2012 drought than by the 2015 one. Water balance components analysis for the entire period 1931–2016 showed that because of continuously increasing air temperature and balance evapotranspiration there is a decrease of runoff in the Slovak territory.
Online veröffentlicht: 29 Oct 2018 Seitenbereich: 404 - 415
Zusammenfassung
Abstract
The erosion, transport and deposition of sediments in small valley reservoirs represent a significant impact on their operations, mainly with regard to reducing the volume of their accumulation. The aim of this study is a comparison and uncertainty analysis of two modelling concepts for assessment of soil loss and sediment transport in a small agricultural catchment, with an emphasis on estimating the off-site effects of soil erosion resulted in sedimentation of a small water reservoir. The small water reservoir (polder) of Svacenicky Creek which was built in 2012, is a part of the flood protection measures in Turá Lúka and is located in the western part of Slovakia, close to the town of Myjava. The town of Myjava in recent years has been threatened by frequent floods, which have caused heavy material losses and significantly limited the quality of life of the local residents. To estimate the amount of soil loss and sediments transported from the basin, we applied two modelling concepts based on the USLE/SDR and WaTEM/SEDEM erosion models and validated the results with the actual bathymetry of the polder. The measurements were provided by a modern Autonomous Underwater Vehicle (AUV) hydrographic instrument. From the sediment data measured and the original geodetic survey of the terrain conducted at the time of the construction of the polder, we calculated changes in the storage volume of the polder during its four years of operation. The results show that in the given area, there has been a gradual clogging of the bottom of the polder caused by water erosion. We estimate that within the four years of the acceptance run, 10,494 m3 of bottom sediments on the Svacenicky Creek polder have accumulated. It therefore follows that repeated surveying of the sedimentation is very important for the management of the water reservoir.
Online veröffentlicht: 29 Oct 2018 Seitenbereich: 416 - 420
Zusammenfassung
Abstract
Soil compaction causes important physical modifications at the subsurface soil, especially from 10 to 30 cm depths. Compaction leads to a decrease in infiltration rates, in saturated hydraulic conductivity, and in porosity, as well as causes an increase in soil bulk density. However, compaction is considered to be a frequent negative consequence of applied agricultural management practices in Slovakia.
Detailed determination of soil compaction and the investigation of a compaction impact on water content, water penetration depth and potential change in water storage in sandy loam soil under sunflower (Helianthus annuus L.) was carried out at 3 plots (K1, K2 and K3) within an experimental site (field) K near Kalinkovo village (southwest Slovakia). Plot K1 was situated on the edge of the field, where heavy agricultural equipment was turning. Plot K2 represented the ridge (the crop row), and plot K3 the furrow (the inter–row area of the field). Soil penetration resistance and bulk density of undisturbed soil samples was determined together with the infiltration experiments taken at all defined plots.
The vertical bulk density distribution was similar to the vertical soil penetration resistance distribution, i.e., the highest values of bulk density and soil penetration resistance were estimated at the plot K1 in 15–20 cm depths, and the lowest values at the plot K2. Application of 50 mm of water resulted in the penetration depth of 30 cm only at all 3 plots. Soil water storage measured at the plot K2 (in the ridge) was higher than the soil water storage measured at the plot K3 (in the furrow), and 4.2 times higher than the soil water storage measured at the most compacted plot K1 on the edge of the field. Results of the experiments indicate the sequence in the thickness of compacted soil layers at studied plots in order (from the least to highest compacted ones): K2–K3–K1.
Online veröffentlicht: 29 Oct 2018 Seitenbereich: 421 - 428
Zusammenfassung
Abstract
During the last decade, biochar has captured the attention of agriculturalists worldwide due to its positive effect on the environment. To verify the biochar effects on organic carbon content, soil sorption, and soil physical properties under the mild climate of Central Europe, we established a field experiment. This was carried out on a silty loam Haplic Luvisol at the Malanta experimental site of the Slovak Agricultural University in Nitra with five treatments: Control (biochar 0 t ha−1, nitrogen 0 kg ha−1); B10 (biochar 10 t ha−1, nitrogen 0 kg ha−1); B20 (biochar 20 t ha−1, nitrogen 0 kg ha−1); B10+N (biochar 10 t ha−1, nitrogen 160 kg ha−1) and B20+N (biochar 20 t ha−1, nitrogen 160 kg ha−1). Applied biochar increased total and available soil water content in all fertilized treatments. Based on the results from the spring soil sampling (porosity and water retention curves), we found a statistically significant increase in the soil water content for all fertilized treatments. Furthermore, biochar (with or without N fertilization) significantly decreased hydrolytic acidity and increased total organic carbon. After biochar amendment, the soil sorption complex became fully saturated mainly by the basic cations. Statistically significant linear relationships were observed between the porosity and (A) sum of base cations, (B) cation exchange capacity, (C) base saturation.
Online veröffentlicht: 29 Oct 2018 Seitenbereich: 429 - 436
Zusammenfassung
Abstract
Recent studies show that biochar improves physical properties of soils and contributes to the carbon sequestration. In contrast to most other studies on biochar, the present study comprise a long-term field experiment with a special focus on the simultaneous impact of N-fertilizer to soil structure parameters and content of soil organic carbon (SOC) since SOC has been linked to improved aggregate stability. However, the question remains: how does the content of water-stable aggregates change with the content of organic matter? In this paper we investigate the effects of biochar alone and in a combination with N-fertilizer (i) on the content of water-stable macro- (WSAma) and micro-aggregates (WSAmi) as well as soil structure parameters; and (ii) on the contents of SOC and labile carbon (CL) in water-stable aggregates (WSA).
A field experiment was conducted with different biochar application rates: B0 control (0 t ha−1), B10 (10 t ha−1) and B20 (20 t ha−1) and 0 (no N), 1st and 2nd level of nitrogen fertilization. The doses of level 1 were calculated on required average crop production using the balance method. The level 2 included an application of additional 100% of N in 2014 and additional 50% of N in the years 2015–2016 on silty loam Haplic Luvisol at the study site located at Dolná Malanta (Slovakia). The effects were investigated after the growing season of spring barley, maize and spring wheat in 2014, 2015 and 2016, respectively.
The results indicate that the B10N0 treatment significantly decreased the structure vulnerability by 25% compared to B0N0. Overall, the lower level of N combined with lower doses of biochar and the higher level of N showed positive effects on the average contents of higher classes of WSAma and other soil structure parameters. The content of SOC in WSA in all size classes and the content of CL in WSAma 3–1 mm significantly increased after applying 20 t ha–1 of biochar compared to B0N0. In the case of the B20N1 treatment, the content of SOC in WSAma within the size classes >5 mm (8%), 5–3 mm (19%), 3–2 mm (12%), 2–1 mm (16%), 1–0.5 mm (14%), 0.5–0.25 mm (9%) and WSAmi (12%) was higher than in B0N1. We also observed a considerably higher content of SOC in WSAma 5–0.5 mm and WSAmi with the B10N1 treatment as compared to B0N1. Doses of 20 t biochar ha−1 combined with second level of N fertilization had significant effect on the increase of WSAma and WSAmi compared to the B0N2 treatment. A significant increase of CL in WSA was determined for size classes of 2–0.25 mm and WSAmi in the B20N2 treatment. Our findings showed that biochar might have beneficial effects on soil structure parameters, SOC, CL in WSA and carbon sequestration, depending on the applied amounts of biochar and nitrogen.
Online veröffentlicht: 29 Oct 2018 Seitenbereich: 437 - 447
Zusammenfassung
Abstract
Analytical solutions describing the 1D substance transport in streams have many limitations and factors, which determine their accuracy. One of the very important factors is the presence of the transient storage (dead zones), that deform the concentration distribution of the transported substance. For better adaptation to such real conditions, a simple 1D approximation method is presented in this paper. The proposed approximate method is based on the asymmetric probability distribution (Gumbel’s distribution) and was verified on three streams in southern Slovakia. Tracer experiments on these streams confirmed the presence of dead zones to various extents, depending mainly on the vegetation extent in each stream. Statistical evaluation confirms that the proposed method approximates the measured concentrations significantly better than methods based upon the Gaussian distribution. The results achieved by this novel method are also comparable with the solution of the 1D advection-diffusion equation (ADE), whereas the proposed method is faster and easier to apply and thus suitable for iterative (inverse) tasks.
Online veröffentlicht: 29 Oct 2018 Seitenbereich: 448 - 456
Zusammenfassung
Abstract
This paper deals with studying of two topics – measuring of velocity profile deformation behind a over-flooded construction and modelling of this velocity profile deformation by computational fluid dynamics (CFD). Numerical simulations with an unsteady RANS models - Standard k-ε, Realizable k-ε, Standard k-ω and Reynolds stress models (ANSYS Fluent v.18) and experimental measurements in a laboratory flume (using ADV) were performed. Results of both approaches showed and affirmed presence of velocity profile deformation behind the obstacle, but some discrepancies between the measured and simulated values were also observed. With increasing distance from the obstacle, the differences between the simulation and the measured data increase and the results of the numerical models are no longer usable.
The extent (determined by the repellency indices RI and RIc) and persistence (determined by the water drop penetration time, WDPT) of soil water repellency (SWR) induced by pines were assessed in vastly different geographic regions. The actual SWR characteristics were estimated in situ in clay loam soil at Ciavolo, Italy (CiF), sandy soil at Culbin, United Kingdom (CuF), silty clay soil at Javea, Spain (JaF), and sandy soil at Sekule, Slovakia (SeF). For Culbin soil, the potential SWR characteristics were also determined after oven-drying at 60°C (CuD). For two of the three pine species considered, strong (Pinus pinaster at CiF) and severe (Pinus sylvestris at CuD and SeF) SWR conditions were observed. Pinus halepensis trees induced slight SWR at JaF site. RI and RIc increased in the order: JaF < CuF < CiF < CuD < SeF, reflecting nearly the same order of WDPT increase. A lognormal distribution fitted well to histograms of RIc data from CuF and JaF, whereas CiF, CuD and SeF had multimodal distributions. RI correlated closely with WDPT, which was used to develop a classification of RI that showed a robust statistical agreement with WDPT classification according to three different versions of Kappa coefficient.
The application of Brilliant Blue FCF tracer enables to identify flow types in multi-domain porous systems of soils via analyses of morphologic parameters of stained objects occurring in dye pattern profiles, as they represent the footprint of flow processes which occurred in soil during both the infiltration and the redistribution of dye solution. We analysed the vertical dye pattern profiles exposed for different time lengths, and revealed temporal evolution of dye solution redistribution leading to changes in flow types. The field experiment was performed with the Brilliant Blue tracer (the 10 g l−1 concentration) applied on 1m x 1m surface of the Dystric Cambisol. The top litter horizon had been removed before 100 l of the tracer was applied. Four vertical profiles were excavated on the experimental plot (always 20 cm apart) at different times after the irrigation had been finished: 2 hours (CUT 2), 24 hours (CUT 24), 27 hours (CUT 27) and 504 hours (CUT 504). The analyses of the dyed patterns profiles showed the spatio-temporal changes in the dye coverage, surface area density, average BB concentration, and stained path width, which allowed us to specify three stages of dye solution redistribution history: (i) a stage of preferential macropore flow, (ii) a stage of strong interaction between macropore-domain and soil matrix leading to the generation of heterogeneous matrix flow and fingering flow types, and (iii) a final stage of dye redistribution within the soil body connected with leaching of BB caused by meteoric water. With increasing time, the macropore flow types convert to mostly matrix-dominated FTs in the upper part of the soil profile. These results were supported by soil hydrological modelling, which implied that more than 70% of the soil moisture profiles variability among CUT 2–CUT 504 could be explained by the time factor.
In many Austrian catchments in recent decades an increase in the mean annual air temperature and precipitation has been observed, but only a small change in the mean annual runoff. The main objective of this paper is (1) to analyze alterations in the performance of a conceptual hydrological model when applied in changing climate conditions and (2) to assess the factors and model parameters that control these changes. A conceptual rainfall-runoff model (the TUW model) was calibrated and validated in 213 Austrian basins from 1981–2010. The changes in the runoff model’s efficiency have been compared with changes in the mean annual precipitation and air temperature and stratified for basins with dominant snowmelt and soil moisture processes. The results indicate that while the model’s efficiency in the calibration period has not changed over the decades, the values of the model’s parameters and hence the model’s performance (i.e., the volume error and the runoff model’s efficiency) in the validation period have changed. The changes in the model’s performance are greater in basins with a dominant soil moisture regime. For these basins, the average volume error which was not used in calibration has increased from 0% (in the calibration periods 1981–1990 or 2001–2010) to 9% (validation period 2001–2010) or –8% (validation period 1981–1990), respectively. In the snow-dominated basins, the model tends to slightly underestimate runoff volumes during its calibration (average volume error = –4%), but the changes in the validation periods are very small (i.e., the changes in the volume error are typically less than 1–2%). The model calibrated in a colder decade (e.g., 1981–1990) tends to overestimate the runoff in a warmer and wetter decade (e.g., 2001–2010), particularly in flatland basins. The opposite case (i.e., the use of parameters calibrated in a warmer decade for a colder, drier decade) indicates a tendency to underestimate runoff. A multidimensional analysis by regression trees showed that the change in the simulated runoff volume is clearly related to the change in precipitation, but the relationship is not linear in flatland basins. The main controlling factor of changes in simulated runoff volumes is the magnitude of the change in precipitation for both groups of basins. For basins with a dominant snowmelt runoff regime, the controlling factors are also the wetness of the basins and the mean annual precipitation. For basins with a soil moisture regime, landcover (forest) plays an important role.
Several quite severe droughts occurred in Europe in the 21st century; three of them (2003, 2012 and 2015) hit also Slovakia. The Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration Index (SPEI) were used for assessment of meteorological drought occurrence. The research was established on discharge time series representing twelve river basins in Slovakia within the period 1981–2015. Sequent Peak Algorithm method based on fixed threshold, three parametric Weibull and generalized extreme values distribution GEV, factor and multiple regression analyses were employed to evaluate occurrence and parameters of hydrological drought in 2003, 2011–2012 and 2015, and the relationship among the water balance components. Results showed that drought parameters in evaluated river basins of Slovakia differed in respective years, most of the basins suffered more by 2003 and 2012 drought than by the 2015 one. Water balance components analysis for the entire period 1931–2016 showed that because of continuously increasing air temperature and balance evapotranspiration there is a decrease of runoff in the Slovak territory.
The erosion, transport and deposition of sediments in small valley reservoirs represent a significant impact on their operations, mainly with regard to reducing the volume of their accumulation. The aim of this study is a comparison and uncertainty analysis of two modelling concepts for assessment of soil loss and sediment transport in a small agricultural catchment, with an emphasis on estimating the off-site effects of soil erosion resulted in sedimentation of a small water reservoir. The small water reservoir (polder) of Svacenicky Creek which was built in 2012, is a part of the flood protection measures in Turá Lúka and is located in the western part of Slovakia, close to the town of Myjava. The town of Myjava in recent years has been threatened by frequent floods, which have caused heavy material losses and significantly limited the quality of life of the local residents. To estimate the amount of soil loss and sediments transported from the basin, we applied two modelling concepts based on the USLE/SDR and WaTEM/SEDEM erosion models and validated the results with the actual bathymetry of the polder. The measurements were provided by a modern Autonomous Underwater Vehicle (AUV) hydrographic instrument. From the sediment data measured and the original geodetic survey of the terrain conducted at the time of the construction of the polder, we calculated changes in the storage volume of the polder during its four years of operation. The results show that in the given area, there has been a gradual clogging of the bottom of the polder caused by water erosion. We estimate that within the four years of the acceptance run, 10,494 m3 of bottom sediments on the Svacenicky Creek polder have accumulated. It therefore follows that repeated surveying of the sedimentation is very important for the management of the water reservoir.
Soil compaction causes important physical modifications at the subsurface soil, especially from 10 to 30 cm depths. Compaction leads to a decrease in infiltration rates, in saturated hydraulic conductivity, and in porosity, as well as causes an increase in soil bulk density. However, compaction is considered to be a frequent negative consequence of applied agricultural management practices in Slovakia.
Detailed determination of soil compaction and the investigation of a compaction impact on water content, water penetration depth and potential change in water storage in sandy loam soil under sunflower (Helianthus annuus L.) was carried out at 3 plots (K1, K2 and K3) within an experimental site (field) K near Kalinkovo village (southwest Slovakia). Plot K1 was situated on the edge of the field, where heavy agricultural equipment was turning. Plot K2 represented the ridge (the crop row), and plot K3 the furrow (the inter–row area of the field). Soil penetration resistance and bulk density of undisturbed soil samples was determined together with the infiltration experiments taken at all defined plots.
The vertical bulk density distribution was similar to the vertical soil penetration resistance distribution, i.e., the highest values of bulk density and soil penetration resistance were estimated at the plot K1 in 15–20 cm depths, and the lowest values at the plot K2. Application of 50 mm of water resulted in the penetration depth of 30 cm only at all 3 plots. Soil water storage measured at the plot K2 (in the ridge) was higher than the soil water storage measured at the plot K3 (in the furrow), and 4.2 times higher than the soil water storage measured at the most compacted plot K1 on the edge of the field. Results of the experiments indicate the sequence in the thickness of compacted soil layers at studied plots in order (from the least to highest compacted ones): K2–K3–K1.
During the last decade, biochar has captured the attention of agriculturalists worldwide due to its positive effect on the environment. To verify the biochar effects on organic carbon content, soil sorption, and soil physical properties under the mild climate of Central Europe, we established a field experiment. This was carried out on a silty loam Haplic Luvisol at the Malanta experimental site of the Slovak Agricultural University in Nitra with five treatments: Control (biochar 0 t ha−1, nitrogen 0 kg ha−1); B10 (biochar 10 t ha−1, nitrogen 0 kg ha−1); B20 (biochar 20 t ha−1, nitrogen 0 kg ha−1); B10+N (biochar 10 t ha−1, nitrogen 160 kg ha−1) and B20+N (biochar 20 t ha−1, nitrogen 160 kg ha−1). Applied biochar increased total and available soil water content in all fertilized treatments. Based on the results from the spring soil sampling (porosity and water retention curves), we found a statistically significant increase in the soil water content for all fertilized treatments. Furthermore, biochar (with or without N fertilization) significantly decreased hydrolytic acidity and increased total organic carbon. After biochar amendment, the soil sorption complex became fully saturated mainly by the basic cations. Statistically significant linear relationships were observed between the porosity and (A) sum of base cations, (B) cation exchange capacity, (C) base saturation.
Recent studies show that biochar improves physical properties of soils and contributes to the carbon sequestration. In contrast to most other studies on biochar, the present study comprise a long-term field experiment with a special focus on the simultaneous impact of N-fertilizer to soil structure parameters and content of soil organic carbon (SOC) since SOC has been linked to improved aggregate stability. However, the question remains: how does the content of water-stable aggregates change with the content of organic matter? In this paper we investigate the effects of biochar alone and in a combination with N-fertilizer (i) on the content of water-stable macro- (WSAma) and micro-aggregates (WSAmi) as well as soil structure parameters; and (ii) on the contents of SOC and labile carbon (CL) in water-stable aggregates (WSA).
A field experiment was conducted with different biochar application rates: B0 control (0 t ha−1), B10 (10 t ha−1) and B20 (20 t ha−1) and 0 (no N), 1st and 2nd level of nitrogen fertilization. The doses of level 1 were calculated on required average crop production using the balance method. The level 2 included an application of additional 100% of N in 2014 and additional 50% of N in the years 2015–2016 on silty loam Haplic Luvisol at the study site located at Dolná Malanta (Slovakia). The effects were investigated after the growing season of spring barley, maize and spring wheat in 2014, 2015 and 2016, respectively.
The results indicate that the B10N0 treatment significantly decreased the structure vulnerability by 25% compared to B0N0. Overall, the lower level of N combined with lower doses of biochar and the higher level of N showed positive effects on the average contents of higher classes of WSAma and other soil structure parameters. The content of SOC in WSA in all size classes and the content of CL in WSAma 3–1 mm significantly increased after applying 20 t ha–1 of biochar compared to B0N0. In the case of the B20N1 treatment, the content of SOC in WSAma within the size classes >5 mm (8%), 5–3 mm (19%), 3–2 mm (12%), 2–1 mm (16%), 1–0.5 mm (14%), 0.5–0.25 mm (9%) and WSAmi (12%) was higher than in B0N1. We also observed a considerably higher content of SOC in WSAma 5–0.5 mm and WSAmi with the B10N1 treatment as compared to B0N1. Doses of 20 t biochar ha−1 combined with second level of N fertilization had significant effect on the increase of WSAma and WSAmi compared to the B0N2 treatment. A significant increase of CL in WSA was determined for size classes of 2–0.25 mm and WSAmi in the B20N2 treatment. Our findings showed that biochar might have beneficial effects on soil structure parameters, SOC, CL in WSA and carbon sequestration, depending on the applied amounts of biochar and nitrogen.
Analytical solutions describing the 1D substance transport in streams have many limitations and factors, which determine their accuracy. One of the very important factors is the presence of the transient storage (dead zones), that deform the concentration distribution of the transported substance. For better adaptation to such real conditions, a simple 1D approximation method is presented in this paper. The proposed approximate method is based on the asymmetric probability distribution (Gumbel’s distribution) and was verified on three streams in southern Slovakia. Tracer experiments on these streams confirmed the presence of dead zones to various extents, depending mainly on the vegetation extent in each stream. Statistical evaluation confirms that the proposed method approximates the measured concentrations significantly better than methods based upon the Gaussian distribution. The results achieved by this novel method are also comparable with the solution of the 1D advection-diffusion equation (ADE), whereas the proposed method is faster and easier to apply and thus suitable for iterative (inverse) tasks.
This paper deals with studying of two topics – measuring of velocity profile deformation behind a over-flooded construction and modelling of this velocity profile deformation by computational fluid dynamics (CFD). Numerical simulations with an unsteady RANS models - Standard k-ε, Realizable k-ε, Standard k-ω and Reynolds stress models (ANSYS Fluent v.18) and experimental measurements in a laboratory flume (using ADV) were performed. Results of both approaches showed and affirmed presence of velocity profile deformation behind the obstacle, but some discrepancies between the measured and simulated values were also observed. With increasing distance from the obstacle, the differences between the simulation and the measured data increase and the results of the numerical models are no longer usable.