1. bookVolumen 70 (2022): Heft 3 (September 2022)
28 Mar 2009
4 Hefte pro Jahr
Uneingeschränkter Zugang

The effects of satellite soil moisture data on the parametrization of topsoil and root zone soil moisture in a conceptual hydrological model

Online veröffentlicht: 23 Aug 2022
Volumen & Heft: Volumen 70 (2022) - Heft 3 (September 2022)
Seitenbereich: 295 - 307
Eingereicht: 06 Jul 2022
Akzeptiert: 23 Jul 2022
28 Mar 2009
4 Hefte pro Jahr

Adeyeri, O.E., Laux, P., Arnault, J., Lawin, A. E., Kunstmann, H., 2020. Conceptual hydrological model calibration using multi-objective optimization techniques over the trans-boundary Komadugu-Yobe basin, Lake Chad Area, West Africa. Journal of Hydrology: Regional Studies, 27, 100655. DOI: 10.1016/j.ejrh.2019.100655 DOI öffnenSearch in Google Scholar

Ardia, D., Mullen, K., 2010. DEoptim: Differential Evolution Optimization in R. R package version 2.0-4, URL http://CRAN.R-project.org/package=DEoptim Search in Google Scholar

Beck, H.E., Pan, M., Miralles, D.G., Reichle, R.H., Dorigo, W. A., Hahn, S. et al., 2021. Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors. Hydrol. Earth Syst. Sci., 25, 1, 17–40. DOI: 10.5194/hess-25-17-2021 DOI öffnenSearch in Google Scholar

Bergstrom, S., 1992. The HBV model - its structure and applications. Report No. 4. Swedish Meteorological and Hydro-logical Institute. Search in Google Scholar

Bomhof, R.H., Gärtner, F.R., Stiggelbout, A.M., et al., 2019. Key components of shared decision making models: a systematic review. BMJ Open, 9 12, e031763. DOI: 10.1136/bmjopen-2019-031763693710131852700 DOI öffnenSearch in Google Scholar

Brocca, L., Melone, F., Moramarco, T., Morbidelli, R., 2009. Antecedent wetness conditions based on ERS scatterometer data. J. Hydrol., 2009, 364, 73–87.10.1016/j.jhydrol.2008.10.007 Search in Google Scholar

Brocca, L., Ciabatta, L., Massari, C., Camici, S., Tarpanelli, A., 2017. Soil moisture for hydrological applications: Open questions and new opportunities. Water, 9, 2, 140. DOI: 10.3390/w9020140 DOI öffnenSearch in Google Scholar

Ciupak, M., Ozga-Zielinski, B., Adamowski, J., Deo, R. C., Kochanek, K., 2019. Correcting satellite precipitation data and assimilating satellite-derived soil moisture data to generate ensemble hydrological forecasts within the HBV Rainfall-Runoff Model. Water, 11, 10, 2138. DOI: 10.3390/w11102138 DOI öffnenSearch in Google Scholar

Demirel, M.C., Özen, A., Orta, S., Toker, E., Demir, H.K., Ekmekcioğlu, Ö. et al., 2019. Additional value of using satellite-based soil moisture and two sources of groundwater data for hydrological model calibration. Water, 11, 10, 2083. https://doi.org/10.3390/w11102083 Search in Google Scholar

De Santis, D., Biondi, D., Crow, W.T., Camici, S., Modanesi, S., Brocca, L., Massari, C., 2021. Assimilation of satellite soil moisture products for river flow prediction: An extensive experiment in over 700 catchments throughout Europe. Water Resources Research, 57, e2021WR029643. https://doi.org/10.1029/2021WR029643 Search in Google Scholar

Efstratiadis, A., Koutsoyiannis, D., 2010. One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrological Sciences Journal, 55, 1, 58–78. DOI: 10.1080/02626660903526292 DOI öffnenSearch in Google Scholar

EODC, 2021. Product User Manual ASCAT DIREX SWI 0.5 km, v1.0. Search in Google Scholar

Fang, B., Lakshmi, V., 2014. Soil moisture at watershed scale: Remote sensing techniques. J. Hydrol., 516, 258–272.10.1016/j.jhydrol.2013.12.008 Search in Google Scholar

Hahn, S., Wagner, W., Steele-Dunne, S., Vreugdenhil, M., Melzer, T., 2021. Improving ASCAT soil moisture retrievals with an enhanced spatially variable vegetation parameterization. IEEE Transactions on Geoscience and Remote Sensing, 59, 10, 8241–8256. https://doi.org/10.34726/1622 Search in Google Scholar

Hiebl, J., Frei, C., 2016. Daily temperature grids for Austria since 1961 – Concept, creation and applicability. Theor. Appl. Clim., 124, 161–178.10.1007/s00704-015-1411-4 Search in Google Scholar

Hiebl, J., Frei, C., 2017. Daily precipitation grids for Austria since 1961 – Development and evaluation of a spatial dataset for hydroclimatic monitoring and modelling. Theor. Appl. Clim., 132, 327–345.10.1007/s00704-017-2093-x Search in Google Scholar

Jadidoleslam, N., Mantilla, R., Krajewski, W.F., Goska, R., 2019. Investigating the role of antecedent SMAP satellite soil moisture, radar rainfall and MODIS vegetation on runoff production in an agricultural region. Journal of Hydrology, 579, 124210. DOI: 10.1016/j.jhydrol.2019.124210 DOI öffnenSearch in Google Scholar

Jun, S., Park, J.H., Choi, HJ., Lee, Y.H., Lim, Y.J., Boo, K.O., Kang, H.S., 2021. Impact of soil moisture data assimilation on analysis and medium-range forecasts in an Operational Global Data Assimilation and Prediction System. Atmosphere, 12, 1089. https://doi.org/10.3390/atmos12091089 Search in Google Scholar

Kim, H., Parinussa, R., Konings, A. G., Wagner, W., Cosh, M. H., Lakshmi, V. et al., 2018. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 204, 260–275. DOI: 10.1016/j.rse.2017.10.026 DOI öffnenSearch in Google Scholar

Kim, S., Zhang, R., Pham, H., Sharma, A., 2019. A review of satellite-derived soil moisture and its usage for flood estimation. Remote Sens. Earth Syst. Sci., 2, 4, 225–246. DOI: 10.1007/s41976-019-00025-7 DOI öffnenSearch in Google Scholar

Kuban, M., Parajka, J., Tong, R., Pfeil, I., Vreugdenhil, M., Sleziak, P., Adam, B., Szolgay, J., Kohnová, S., Hlavcova, K., 2021. Incorporating advanced scatterometer surface and root zone soil moisture products into the calibration of a Conceptual Semi-Distributed Hydrological Model. Water, 13, 3366. https://doi.org/10.3390/w13233366 Search in Google Scholar

Kundu, D., Vervoort, R.W., van Ogtrop, F.F., 2017. The value of remotely sensed surface soil moisture for model calibration using SWAT. Hydrol. Process., 31, 15, 2764–2780. DOI: 10.1002/hyp.11219 DOI öffnenSearch in Google Scholar

Kosugi, K., 1994. Three-parameter lognormal distribution model for soil water retention. AGU, https://doi.org/10.1029/93WR02931 Search in Google Scholar

Kosugi, K., 1996. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resources Research, 32, 2697–2703.10.1029/96WR01776 Search in Google Scholar

Le, M.H., Nguyen, B.Q., Pham, H.T., Patil, A., Do, H.X., Ramsankaran, R.A.A.J., Bolten, J.D., Lakshmi, V., 2022. Assimilation of SMAP products for improving streamflow simulations over tropical climate region – Is spatial information more important than temporal information? Remote Sensing, 14, 1607. https://doi.org/10.3390/rs14071607 Search in Google Scholar

Li, Y., Grimaldi, S., Pauwels, V., Walker, R.N., Jeffrey P., 2018. Hydrologic model calibration using remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged and ungauged locations. Journal of Hydrology, 557, 897–909. DOI: 10.1016/j.jhydrol.2018.01.013 DOI öffnenSearch in Google Scholar

Lindstrom, G., Barbro J., Magnus, P., Marie, G., Sten, B., 1997. Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology, 201, 1–4, 272–288. https://doi.org/10.1016/S0022-1694(97)00041-3 Search in Google Scholar

Liu, W., Wang, J., Xu, F., Li, C., Xian, T., 2022. Validation of four satellite-derived soil moisture products using ground-based in situ observations over Northern China. Remote Sensing, 14, 6, 1419. DOI: 10.3390/rs14061419 DOI öffnenSearch in Google Scholar

Loizu, J., Massari, C., Álvarez-Mozos, J., Tarpanelli, A., Brocca, L., Casalí, J., 2018. On the assimilation set-up of ASCAT soil moisture data for improving streamflow catchment simulation. Advances in Water Resources, 111, 86–104. DOI: 10.1016/j.advwatres.2017.10.034 DOI öffnenSearch in Google Scholar

Mascaro, G., Ko, A., Vivoni, E.R., 2019. Closing the loop of satellite soil moisture estimation via scale invariance of hydrologic simulations. Scientific Reports, 9, 1, 16123. DOI: 10.1038/s41598-019-52650-3.683467431695120 DOI öffnenSearch in Google Scholar

Massari, C., Brocca, L., Tarpanelli, A., Moramarco, T., 2015. Data assimilation of satellite soil moisture into rainfall-runoff modelling: A complex recipe? Remote Sensing, 7, 9, 11403–11433. DOI: 10.3390/rs70911403 DOI öffnenSearch in Google Scholar

Meng, S., Xie, X., Liang, S., 2017. Assimilation of soil moisture and streamflow observations to improve flood forecasting with considering runoff routing lags. Journal of Hydrology, 550, 568–579. DOI: 10.1016/j.jhydrol.2017.05.024 DOI öffnenSearch in Google Scholar

Monteil, C., Zaoui, F., Le Moine, N., Hendrickx, F., 2020. Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules – the caRamel algorithm. Hydrol. Earth Syst. Sci., 24, 3189–3209. https://doi.org/10.5194/hess-24-3189-2020 Search in Google Scholar

Mostafaie, A., Forootan, E., Safari, A., Schumacher, M., 2018. Comparing multi-objective optimization techniques to calibrate a conceptual hydrological model using in situ runoff and daily GRACE data. Comput. Geosci., 22, 3, 789–814. DOI: 10.1007/s10596-018-9726-8 DOI öffnenSearch in Google Scholar

Mullen, K.M., Ardia, D., Gil, D.L., Windover, D., Cline, J., 2011. DEoptim: An R Package for Global Optimization by Differential Evolution. Journal of Statistical Software, 40, 6, 1–26. https://doi.org/10.18637/jss.v040.i06 Search in Google Scholar

Muñoz-Sabater, J., Al Bitar, A., Brocca, L., 2016. Soil moisture retrievals based on active and passive microwave data: State-of-the-art and operational applications. In: Petropoulos, G.P., Srivastava, P., Kerr, Y. (Eds.): Satellite Soil Moisture Retrievals: Techniques and Applications. Elsevier: Amsterdam, The Netherlands, 18, pp. 351–378.10.1016/B978-0-12-803388-3.00018-8 Search in Google Scholar

Naeimi, V., Scipal, K., Bartalis, Z., Hasenauer, S., Wagner, W., 2009. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans. Geosci. Remote Sensing, 47, 7, 1999–2013. DOI: 10.1109/TGRS.2008.2011617 DOI öffnenSearch in Google Scholar

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology, 10, 3, 282–290. DOI: 10.1016/0022-1694(70)90255-6 DOI öffnenSearch in Google Scholar

Nijzink, R.C., Almeida, S., Pechlivanidis, I.G., Capell, R., Gustafssons, D., Arheimer, B. et al., 2018. Constraining conceptual hydrological models with multiple information sources. Water Resour. Res., 54, 10, 8332–8362. DOI: 10.1029/2017WR021895 DOI öffnenSearch in Google Scholar

Olofintoye, O., Ayanshola, A., Salami, A., Idrissiou, A., Iji, J., Adeleke, O., 2022. A study on the applicability of a Swat model in predicting the water yield and water balance of the Upper Ouémé catchment in the Republic of Benin. Slovak Journal of Civil Engineering, 30, 1, 57–66. https://doi.org/10.2478/sjce-2022-0007 Search in Google Scholar

Parajka, J., Merz, R., Blöschl, G., 2003. Estimation of daily potential evapotranspiration for regional water balance modeling in Austria. In: 11th International Poster Day and Institute of Hydrology Open Day “Transport of Water, Chemicals and Energy in the Soil – Crop Canopy – Atmosphere System”. Slovak Academy of Sciences, Bratislava, pp. 299–306. Search in Google Scholar

Parajka, J., Merz, R., Blöschl, G., 2007. Uncertainty and multiple objective calibrations in regional water balance modeling: a case study in 320 Austrian catchments. Hydrol. Process., 21, 435–446. DOI: 10.1002/hyp.6253 DOI öffnenSearch in Google Scholar

Parajka, J., Naeimi, V., Blöschl, G., Komma, J., 2009. Matching ERS scatterometer based soil moisture patterns with simulations of a conceptual dual layer hydrologic model over Austria. Hydrol. Earth Syst. Sci., 13, 259–271. https://doi.org/10.5194/hess-13-259-2009 Search in Google Scholar

Paulik, C., Dorigo, W., Wagner, W., Kidd, R., 2014. Validation of the ASCAT Soil Water Index using in situ data from the International Soil Moisture Network. International Journal of Applied Earth Observation and Geoinformation, 30, 1–8. DOI: 10.1016/j.jag.2014.01.007 DOI öffnenSearch in Google Scholar

Pfeil, I., Vreugdenhil, M., Hahn, S., Wagner, W., Strauss, P., Blöschl, G., 2018. Improving the seasonal representation of ASCAT soil moisture and vegetation dynamics in a temperate climate. Remote Sensing, 10, 1788. https://doi.org/10.3390/rs10111788 Search in Google Scholar

Rajib, M.A., Venkatesh, M., Zhiqiang, Y., 2016. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. Journal of Hydrology, 536, 2016, 192–207. ISSN 0022-1694. https://doi.org/10.1016/j.jhydrol.2016.02.037 Search in Google Scholar

Storn, R., Price, K., 1997. Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359. https://doi.org/10.1023/A:1008202821328 Search in Google Scholar

Sunwoo, W., Choi, M., 2017. Robust initial wetness condition framework of an event-based rainfall–runoff model using remotely sensed soil moisture. Water, 9, 2, 77. DOI: 10.3390/w9020077 DOI öffnenSearch in Google Scholar

Sleziak, P., Szolgay, J., Hlavčová, K., Danko, M., Parajka, J., 2020. The effect of the snow weighting on the temporal stability of hydrologic model efficiency and parameters. Journal of Hydrology, 583, 124639. ISSN 0022-1694. https://doi.org/10.1016/j.jhydrol.2020.124639 Search in Google Scholar

Steele-Dunne, S.C., Hahn, S., Wagner, W., Vreugdenhil, M., 2021. Towards including dynamic vegetation parameters in the EUMETSAT H SAF ASCAT soil moisture products. Remote Sensing, 13, 1463. https://doi.org/10.3390/rs13081463 Search in Google Scholar

SWI, 2022.https://land.copernicus.eu/global/products/swi Search in Google Scholar

Széles, B., Parajka, J., Hogan, P., Silasari, R., Pavlin, L., Strauss, P., Blöschl, G., 2020. The added value of different data types for calibrating and testing a hydrologic model in a small catchment. Water Resources Research, 56, 10, e2019WR026153. DOI: 10.1029/2019WR026153759444733149373 DOI öffnenSearch in Google Scholar

Tebbs, E., Gerard, F., Petrie, A., De Witte, E., 2016. Emerging and potential future applications of satellite-based soil moisture products. In: Petropoulos, G.P., Srivastava, P., Kerr, Y. (Eds.): Satellite Soil Moisture Retrievals: Techniques and Applications. Elsevier: Amsterdam, The Netherlands, 19, pp. 379–400.10.1016/B978-0-12-803388-3.00019-X Search in Google Scholar

Thornton, J.M., Mariethoz, G., Brauchli, T.J., Brunner, P., 2021. Efficient multi-objective calibration and uncertainty analysis of distributed snow simulations in rugged alpine terrain. Journal of Hydrology, 598, 126–241. DOI: 10.1016/j.jhydrol.2021.126241 DOI öffnenSearch in Google Scholar

Tian, S., Renzullo, L.J., Pipunic, R.C., Lerat, J., Sharples, W., Donnelly, C., 2021. Satellite soil moisture data assimilation for improved operational continental water balance prediction. Hydrol. Earth Syst. Sci., 25, 4567–4584. https://doi.org/10.5194/hess-25-4567-2021, 202110.5194/hess-25-4567-2021 Search in Google Scholar

Tong, R., Parajka, J., Salentinig, A., Pfeil, I., Komma, J., Széles, B. et al., 2021. The value of ASCAT soil moisture and MODIS snow cover data for calibrating a conceptual hydrologic model. Hydrol. Earth Syst. Sci., 25, 1389–1410. DOI: 10.5194/hess-25-1389-2021 DOI öffnenSearch in Google Scholar

Tramblay, Y., Bouaicha, R., Brocca, L., Dorigo, W., Bouvier, C., Camici, S., Servat, E., 2012. Estimation of antecedent wetness conditions for flood modelling in northern Morocco. Hydrol. Earth Syst. Sci., 16, 4375–4386.10.5194/hess-16-4375-2012 Search in Google Scholar

Vachaud, G., Passerat De Silans, A., Balabanis, P., Vauclin, M., 1985. Temporal stability of spatially measured soil water probability density function. Soil Sci. Soc. Am. J., 49, 4, 822–828. DOI: 10.2136/sssaj1985.03615995004900040006x DOI öffnenSearch in Google Scholar

Viglione, A., Parajka, J., 2020. Lumped/Semi-Distributed Hydrological Model for Education Purposes. http://CRAN.R-project.org/package=TUWmodel, published 2020-02-26, License: GPL-2 | GPL-3, accessed 07/04/2022. Search in Google Scholar

Viglione, A., Parajka, J., Rogger, M., Salinas, J.L., Laaha, G., Sivapalan, M., Blöschl, G., 2013. Comparative assessment of predictions in ungauged basins – Part 3: Runoff signatures in Austria. Hydrol. Earth Syst. Sci., 17, 2263–2279, https://doi.org/10.5194/hess-17-2263-2013 Search in Google Scholar

Wagner, W., Lemoine, G., Rott, H., 1999. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ., 70, 2, 191–207.10.1016/S0034-4257(99)00036-X Search in Google Scholar

Wagner, W., Blöschl, G., Pampaloni, P., Calvet, J.C., Bizzarri, B., Wigneron, J.P., Kerr, Y., 2007. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrol. Res., 38, 1–20.10.2166/nh.2007.029 Search in Google Scholar

Wagner, W., Pathe, C., Doubkova, M., Sabel, D., Bartsch, A., Hasenauer, S., Blöschl, G., Scipal, K., Martínez-Fernández, J., Löw, A., 2008. Temporal stability of soil moisture and radar backscatter observed by the advanced synthetic aperture radar (ASAR). Sensors, 8, 1174–1197. https://doi.org/10.3390/s80201174392750127879759 Search in Google Scholar

Wanders, N., Bierkens, M.F.P., de Jong, S.M., de Roo, A., Karssenberg, D., 2014. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resour. Res., 50, 8, 6874–6891. DOI: 10.1002/2013WR014639 DOI öffnenSearch in Google Scholar

Xiong, L., Zeng, L., 2019. Impacts of introducing remote sensing soil moisture in calibrating a distributed hydrological model for streamflow simulation. Water, 11, 4, 666. DOI: 10.3390/w11040666 DOI öffnenSearch in Google Scholar

Zhang, Y., Schaap, M.G., Zha, Y., 2018. A high-resolution global map of soil hydraulic properties produced by a hierarchical parameterization of a physically based water retention model. Water Res., 54, 9774–9790.10.1029/2018WR023539 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo