1. bookVolumen 70 (2022): Heft 3 (September 2022)
28 Mar 2009
4 Hefte pro Jahr
Uneingeschränkter Zugang

Applied methodology based on HEC-HMS for reservoir filling estimation due to soil erosion

Online veröffentlicht: 23 Aug 2022
Volumen & Heft: Volumen 70 (2022) - Heft 3 (September 2022)
Seitenbereich: 341 - 356
Eingereicht: 13 May 2022
Akzeptiert: 25 Jul 2022
28 Mar 2009
4 Hefte pro Jahr

Akoko, G., Le, T.H., Gomi, T., Kato, T., 2021. A review of SWAT model application in Africa. Water, 13, 9, 1313. Search in Google Scholar

Allue, A., 1990. Phytoclimatic Atlas of Spain. Taxonomies. Ministerio de Agricultura, Pesca y Alimentación, Madrid. Search in Google Scholar

Arekhi, A., Shabani, Rostamizad, G., 2011. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran), Arab. J. Geosci., 5, 6, 1259–1267. DOI: 10.1007/s12517-010-0271-6 DOI öffnenSearch in Google Scholar

Berteni, F., Dada, A., Grossi, G., 2021. Application of the MUSLE model and potential effects of climate change in a small Alpine catchment in Northern Italy. Water, 13, 2679. https://doi.org/10.3390/w13192679 Search in Google Scholar

Boughton, W.C., 1989. A review of the USDA SCS curve number method. Soil Research, 27, 3, 511–523.10.1071/SR9890511 Search in Google Scholar

Busari, M.A., Kukal, S.S., Kaur, A., Bhatt, R., Dulazi, A.A., 2015. Conservation tillage impacts on soil, crop and the environment. Int. Soil and Water Conserv. Res., 3, 2, 119–129.10.1016/j.iswcr.2015.05.002 Search in Google Scholar

Chiang, S., Chang, C.-H., Chen, W.-B., 2022. Comparison of rainfall-runoff simulation between support vector regression and HEC-HMS for a rural watershed in Taiwan. Water, 14, 2, 191. DOI: 10.3390/w14020191 DOI öffnenSearch in Google Scholar

Chow, V.T., 1959. Open-Channel Hydraulics. McGraw-Hill Civ. Eng. Ser. Search in Google Scholar

Cohen, M.J., Shepherd, K.D., Walsh, M.G., 2005. Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed. Geoderma, 124, 3–4, 235–252.10.1016/j.geoderma.2004.05.003 Search in Google Scholar

Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, 2022. Catálogo de la Red de Información Ambiental de Andalucía (REDIAM).https://portalrediam.cica.es/geonetwork/srv/spa/catalog.search#/home(accessed Mar. 23, 2022). Junta de Andalucía. Search in Google Scholar

Cunge, J.A., 1969. Au sujet d’une méthode de calcul de propagation des crues (Méthode Muskingum). Journal of Hydraulic Research, 7, 2, 205–230. Search in Google Scholar

Devatha, C.P., Deshpande, V., Renukaprasad, M.S., 2015. Estimation of soil loss using USLE model for Kulhan Watershed, Chattisgarh – A case study. Aquatic Procedia, 4, 1429–1436.10.1016/j.aqpro.2015.02.185 Search in Google Scholar

Djoukbala, O., Hasbaia, M., Benselama, O., Mazour, M., 2019. Comparison of the erosion prediction models from USLE, MUSLE and RUSLE in a Mediterranean watershed, case of Wadi Gazouana (NW of Algeria). Modeling Earth Systems and Environment, 5, 2, 725–743.10.1007/s40808-018-0562-6 Search in Google Scholar

Đukić, V., Erić, R., 2021. SHETRAN and HEC HMS model evaluation for runoff and soil moisture simulation in the Jičinka River catchment (Czech Republic). Water, 13, 6, 872.10.3390/w13060872 Search in Google Scholar

El Aroussi, O., Mesrar, L., El Garouani, A., Lahrach, A., Beaabidaate, L., Akdi, B., Jabrane, R., 2011. Predicting the potential annual soil loss using the revised universal soil loss equation (RUSLE) in the oued El Malleh catchment (Prerif, Morocco). Present Environment and Sustainable Development, 5, 2, 5–15. Search in Google Scholar

Elaloui, A., Marrakchi, C., Fekri, A., Maimouni, S., Aradi, M., 2017. USLE-based assessment of soil erosion by water in the watershed upstream Tessaoute (Central High Atlas, Morocco). Modeling Earth Systems and Environment, 3, 3, 873–885.10.1007/s40808-017-0340-x Search in Google Scholar

European Parlament, 2021. Procedure File: 2021/2548(RSP) | Legislative Observatory.https://oeil.secure.europarl.europa.eu/oeil/popups/ficheprocedure.do?reference=2021/2548(RSP)&l=en(accessed Mar. 06, 2022). Search in Google Scholar

Gassman, P.W., Sadeghi, A.M., Srinivasan, R., 2014. Applications of the SWAT model special section: overview and insights. Journal of Environmental Quality, 43, 1, 1–8.10.2134/jeq2013.11.046625602534 Search in Google Scholar

Ghosh, A., Roy, M.B., Roy, P.K. 2022. Analysing LULC change on runoff and sediment yield in urbanizing agricultural watershed of monsoonal climate river basin in West Bengal, India. In: Jana, N.C., Singh, R.B. (Eds.): Climate, Environment and Disaster in Developing Countries. Springer, Singapore, pp. 23–38. Search in Google Scholar

Gómez-Zotano, J., Alcántara-Manzanares, J., Olmedo-Cobo, J.A., Martínez-Ibarra, E., 2015. La sistematización del clima mediterráneo: identificación, clasificación y caracterización climática de Andalucía (España). Revista de Geografía Norte Grande, 61, 161–180.10.4067/S0718-34022015000200009 Search in Google Scholar

Hara, F., Achab, M., Emran, A., Mahe, G., El Fhel, B., 2018. Estimate the risk of soil erosion using USLE through the development of an Open Source desktop application: DUSLE (Desktop Universal Soil Loss Equation). In: 3rd International Conference on African Large River Basins Hydrology. Search in Google Scholar

ICONA, 1988. Agresividad de la lluvia en España: Valores del factor R de la ecuación universal de pérdidas de suelo. Ministerio de agricultura. Pesca y alimentation. Search in Google Scholar

Jaferi, A.D., Jelalkamali, N., Irandoust, M., 2016. Modelling the erosion in the Shahzadeh Abbas basin using HEC-HMS model. Specialty Journal of Agricultural Sciences, 2, 2, 45–52. Search in Google Scholar

Kinnell, P.I.A., 2005. Why the universal soil loss equation and the revised version of it do not predict event erosion well. Hydrological Processes, 19, 3, 851–854.10.1002/hyp.5816 Search in Google Scholar

Konečná, J., Karásek, P., Beitlerová, H., Fučík, P., Kapička, J., Podhrázská, J., Kvítek, T., 2019. Using WaTEM/SEDEM and HEC-HMS models for the simulation of episodic hydrological and erosion events in a small agricultural catchment. Soil and Water Research, 15, 1, 18–29.10.17221/202/2018-SWR Search in Google Scholar

Lamyaa, K., M’bark, A., Brahim, I., Hicham, A., Soraya, M., 2018. Mapping soil erosion risk using RUSLE, GIS, remote sensing methods: a case of mountainous sub-watershed, Ifni Lake and high valley of Tifnoute (High Moroccan Atlas). Journal of Geography, Environment and Earth Science International, 14, 2, 1–11.10.9734/JGEESI/2018/40322 Search in Google Scholar

López, R., Garcia, C., Vericat, D., Batalla, R.J., 2020. Downstream changes of particle entrainment in a hydropeaked river. Sci. Total Environ., 745, 140952. DOI: 10.1016/j.scitotenv.2020.14095232721617 DOI öffnenSearch in Google Scholar

López-Olmedo, F., 2017. Las series cartográficas: el Mapa Geológico. Ministerio de Ciencia e Innovación.https://open.igme.es/xmlui/handle/20.500.12468/1153 Search in Google Scholar

Lu, J., Zheng, F., Li, G., Bian, F., An, J., 2016. The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the Mollisol region of Northeast China. Soil and Tillage Research, 161, 79–85.10.1016/j.still.2016.04.002 Search in Google Scholar

McCool, D.K., Brown, L.C., Foster, G.R., Mutchler, C.K., Meyer, L.D., 1987. Revised slope steepness factor for the Universal Soil Loss Equation. Transactions of the ASAE, 30, 5, 1387–1396.10.13031/2013.30576 Search in Google Scholar

Mintegui Aguirre, J.Á., Robredo Sánchez, J.C., 1994. Caracterización de las cuencas hidrográficas, objeto de restauración hidrológico-forestal, mediante modelos hidrológicos. Ingeniería del agua, 1, 2, 69–82.10.4995/ia.1994.2637 Search in Google Scholar

Moreno, G., 2008. Response of understorey forage to multiple tree effects in Iberian dehesas. Agriculture, Ecosystems & Environment, 123, 1–3, 239–244.10.1016/j.agee.2007.04.006 Search in Google Scholar

Odongo, V.O., Onyando, J.O., Mutua, B.M., Becht, R., 2013. Sensitivity analysis and calibration of the Modified Universal Soil Loss Equation (MUSLE) for the upper Malewa catchment, Kenya. International Journal of Sediment Research, 28, 3, 368–383.10.1016/S1001-6279(13)60047-5 Search in Google Scholar

OPOCE, 2004. Directive 2004/35/CE of the European Parliament and of the Council of 21 April 2004 on environmental liability with regard to the prevention and remedying of environmental damage. Publications Office of the European Union 2, Luxembourg. Search in Google Scholar

Pak, J., Fleming, M., Scharffenberg, W., Ely, P., 2008. Soil erosion and sediment yield modeling with the hydrologic modeling system (HEC-HMS). In: Proc. World Environmental and Water Resources Congress 2008, Ahupua’A, pp. 1–10.10.1061/40976(316)362 Search in Google Scholar

Pak, J., Ramos, K., Fleming, M., Scharffenberg, W., Gibson, S., 2015a. Sensitivity analysis for sediment transport in the hydrologic modeling system (HEC-HMS). In: Proc. 5th Federal Interagency Hydrologic Modeling Conference and the 10th Federal Interagency Sedimentation Conference. Reno, Nevada. Search in Google Scholar

Pak, J., Fleming, M., Scharffenberg, W., Gibson, S., Brauer, T., 2015b. Modeling surface 800 soil erosion and sediment transport processes in the Upper North Bosque River 801 Watershed, Texas. J. Hydrol. Eng., 20, 12, 4015034. DOI: 802 10.1061/(asce)he.1943-5584.0001205 DOI öffnenSearch in Google Scholar

Pak, J., Floyd, I., Ely, P., 2021. Debris yield modeling application under post-wildfire conditions with the Hydrologic Modeling System (HEC-HMS). EGU General Assembly Abstracts, EGU21-494.10.5194/egusphere-egu21-494 Search in Google Scholar

Ponce, V.M., ASCE M., Yevjevich, V., 1978. Muskingum-Cunge method with variable parameters. Journal of the Hydraulics Division, 104, 12, 1663–1667.10.1061/JYCEAJ.0005119 Search in Google Scholar

Pongsai, S., Schmidt, Vogt, D., Shrestha, R.P., Clemente, R.S., Eiumnoh, A., 2010. Calibration and validation of the Modified Universal Soil Loss Equation for estimating sediment yield on sloping plots: A case study in Khun Satan catchment of northern Thailand. Canadian Journal of Soil Science, 90, 4, 585–596.10.4141/cjss09076 Search in Google Scholar

QGIS software (2021). Bienvenido al proyecto QGIS!. https://www.qgis.org/es/site/ (accessed Mar. 04, 2022). Search in Google Scholar

Revell, N., Lashford, C., Blackett, M., Rubinato, M., 2021. Modelling the hydrological effects of woodland planting on infiltration and peak discharge using HEC-HMS. Water, 13, 21, 3039.S. Search in Google Scholar

Rivera-Toral, F., Pérez-Nieto, S., Ibáñez-Castillo, L.A., Hernández-Saucedo, F.R., 2012. Aplicabilidad del Modelo SWAT para la estimación de la erosión hídrica en las cuencas de México. Agrociencia, 46, 2, 101–105. Search in Google Scholar

Rodríguez González, C.A., 1998. Estudio de Ordenación Agrohidrológica y Socioeconómico Específico de la Cuenca del Arroyo de la Alhaja (Cádiz). Proyecto fin de carrera becado. Programa 940503 ES5-F.4.4. del Fondo Social Europeo. Centro Tecnológico Forestal de Cataluña y Universidad de Lleida, Solsona. Search in Google Scholar

Rodriguez-Iturbe, I., 2000. Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamies. Water Resources Research, 36, 1, 3–9.10.1029/1999WR900210 Search in Google Scholar

Sathya, A., Thampi, S.G., Chithra, N.R., 2021. Development of a framework for sand auditing of the Chaliyar River basin, Kerala, India using HEC-HMS and HEC-RAS model coupling. International Journal of River Basin Management, 1–14.10.1080/15715124.2021.1909604 Search in Google Scholar

Şengül, S., İspirli, M.N., 2022. Predicting snowmelt runoff at the source of the mountainous Euphrates River basin in Turkey for water supply and flood control issues using HECHMS modeling. Water, 14, 3, 284.10.3390/w14030284 Search in Google Scholar

Stephens, G.L., Slingo, J.M., Rignot, E., Reager, J.T., Hakuba, M.Z., Durack, P.J., Rocca, R., 2020. Earth’s water reservoirs in a changing climate. Proceedings of the Royal Society A, 476, 2236, 20190458.10.1098/rspa.2019.0458720913732398926 Search in Google Scholar

Témez, J.R., 1978. Calculo hidrometeoorologico de caudales maximos en pequenas cuencas naturales. Dir. General de Carreteras, Servicio de Publicaciones, Madrid. Search in Google Scholar

Témez, J.R., 2003. Facetas del cálculo hidrometeorológico y estadístico de máximos caudales. Revista de Obras Públicas: Organo profesional de los Ingenieros de Caminos, Canales y Puertos, 3430, 47–51. Search in Google Scholar

Teng, F., Huang, W., Ginis, I., 2018. Hydrological modeling of storm runoff and snowmelt in Taunton River Basin by applications of HEC-HMS and PRMS models. Natural Hazards, 91, 1, 179–199.10.1007/s11069-017-3121-y Search in Google Scholar

Toumi, S., Meddi, M., Mahé, G., Brou, Y.T., 2013. Cartographie de l’érosion dans le bassin versant de l’Oued Mina en Algérie par télédétection et SIG. Hydrological Sciences Journal, 58, 7, 1542–1558.10.1080/02626667.2013.824088 Search in Google Scholar

Williams, J.R., 2018. Sediment-yield prediction with universal equation using runoff energy factor. In: Present and Prospective Technology for Predicting Sediment Yield and Sources. Forgotten Books, pp. 244–252. Search in Google Scholar

Wischmeier, W.H., Johnson, C.B., Cross, B.V., 1971. Soil erodibility nomograph for farmland and construction sites. J. Soils and Water. Cons., 26, 189–193. Search in Google Scholar

Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration, Washington, D.C. Search in Google Scholar

Zhang, Y., Degroote, J., Wolter, C., Sugumaran, R., 2009. Integration of modified universal soil loss equation (MUSLE) into a GIS framework to assess soil erosion risk. Land Degradation & Development, 20, 1, 84–91.10.1002/ldr.893 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo