1. bookVolumen 70 (2022): Heft 3 (September 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-4333
Erstveröffentlichung
28 Mar 2009
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

A new small-scale experimental device for testing backward erosion piping

Online veröffentlicht: 23 Aug 2022
Volumen & Heft: Volumen 70 (2022) - Heft 3 (September 2022)
Seitenbereich: 376 - 384
Eingereicht: 24 Mar 2022
Akzeptiert: 02 Aug 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-4333
Erstveröffentlichung
28 Mar 2009
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

ANSYS, 2013. ANSYS Mechanical APDL Theory Reference. Version 15.0, ANSYS, Inc., Canonsburg, PA. Search in Google Scholar

Benahmed, N., Bonelli, S., 2012. Investigating concentrated leak erosion behaviour of cohesive soils by performing hole erosion tests. European Journal of Environmental and Civil Engineering, 16, 1, 43–58.10.1080/19648189.2012.667667 Search in Google Scholar

Bligh, W.G., 1910. Dams barrages and weirs on porous foundations. Engineering News, 1910, 64.26: 708–710. Search in Google Scholar

Bonelli, S. (Ed.), 2013. Erosion in Geomechanics Applied to Dams and Levees. ISTE Ltd, UK, John Wiley & Sons, Inc. USA, 388 p.10.1002/9781118577165 Search in Google Scholar

Bulletin 164, 2015. Internal Erosion of Existing Dams, Levees and Dikes, and Their Foundations. Volume 1: Internal Erosion Processes and Engineering Assessment. ICIL Bulletin, 342 p. Search in Google Scholar

Chugayev, R.R., 1974. The Subsurface Shape of Hydraulic Structures. Energia, Leningrad, 237 p. (In Russian.) Search in Google Scholar

Chugayev, R.R., 1985. Hydraulic Structures. Agropromizdat, Moscow (In Russian.) Search in Google Scholar

de Wit, G.N., Sellmeijer, J.B., Penning, A., 1981. Laboratory tests on piping. In: Proc. 10th Int. Conf. Soil Mechanics and Foundation Engineering, Stockholm, June 1981. Balkema, Rotterdam, pp. 517–520. Search in Google Scholar

Fell, R., Fry, J.J., 2005. Internal Erosion of Dams and Their Foundations. New York, Taylor & Francis. 245 p. Search in Google Scholar

Fell, R., Wan, C.F., Cyganiewicz, J., Foster, M., 2003. Time for development of internal erosion and piping in embankment dams. Journal of Geotechnical and Geoenvironmental Engineering, 129, 4, 307–314.10.1061/(ASCE)1090-0241(2003)129:4(307) Search in Google Scholar

Hanses, U., 1985. Zur Mechanik der Entwicklung von Erosionskanälen in geschichtetem Untergrund unter Stauanlagen. Dissertation. Grundbauinstitut der Technischen Universität Berlin, Germany. Search in Google Scholar

Lane, E.W., 1935. Security from under-seepage masonry dams on earth foundations. Transactions of the American Society of Civil Engineers, 100, 1, 1235–1272.10.1061/TACEAT.0004655 Search in Google Scholar

Robbins, B.A., van Beek, V.M., López Soto, J.F., Montalvo Bartolomei, A.M., Murphy, J., 2018. A novel laboratory test for backward erosion piping. International Journal of Physical Modelling in Geotechnics, 18, 5, 266–279.10.1680/jphmg.17.00016 Search in Google Scholar

Robbins, B.A., Griffiths, D.V., 2019. Modelling of Backward Erosion Piping in Two- and Three- Dimensional Domains. In: Proceedings of EWG-IE 26th Annual Meeting 2018 “Internal Erosion in Earthdams, Dikes and Levees”. Springer Nature Switzerland, Cham, Switzerland, pp. 149–158.10.1007/978-3-319-99423-9_14 Search in Google Scholar

Saxena, K.R., Sharma, V.M., 2005. Dams. Incidents and Accidents. A. A. Balkema Publishers, New Delhi, 228 p. Search in Google Scholar

Sellmeijer, J.B., 1988. On the mechanism of piping under impervious structures. Ph.D. Thesis. Technical University of Delft, Netherlands. Search in Google Scholar

Sellmeijer, J.B., Cruz, J.L., van Beek, V.M. Knoeff, H., 2011. Fine-tuning of the backward erosion piping model through small-scale, medium-scale and IJkdijk experiments. European Journal of Environmental and Civil Engineering, 15, 8, 1139–1154. DOI: 10.1080/19648189.2011.9714845 DOI öffnenSearch in Google Scholar

Silvis, F., 1991. Verificatie piping model; Proeven in de Deltagoot. Evaluatierapport. Rapport Grondmechanica Delft, CO 317710/7. Search in Google Scholar

van Beek, V., Bezuijen, A., Sellmeijer, J.B., Barends, F.B.J., 2014. Initiation of backward erosion piping in uniform sands. Géotechnique, 64, 12, 927–941.10.1680/geot.13.P.210 Search in Google Scholar

van Beek, V., 2015. Backward erosion piping: Initiation and progression. Ph.D. Thesis. Technical University of Delft, Netherlands, 263 p. Search in Google Scholar

Wan, C.F., Fell, R., 2004. Laboratory tests on the rate of piping erosion of soils in embankment dams. Geotechnical Testing Journal, 27, 3, 295–303.10.1520/GTJ11903 Search in Google Scholar

Wang, D., Fun, X., Jie, Y., Dong, W., Hu, D., 2014. Simulation of pipe progression in a levee foundation with coupled seepage and pipe flow domains. Soils and Foundations, 54, 5, 974–984.10.1016/j.sandf.2014.09.003 Search in Google Scholar

Weijers, J.B.A., Sellmeijer, J.B., 1993. A new model to deal with the piping mechanism. In: Brauns, J., Herbaum, M., Schuler, U. (Eds.): Filters in Geotechnical and Hydraulic Engineering. Balkema, Rotterdam. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo