Zeszyty czasopisma

Tom 12 (2022): Zeszyt 3 (July 2022)

Tom 12 (2022): Zeszyt 2 (April 2022)

Tom 12 (2022): Zeszyt 1 (January 2022)

Tom 11 (2021): Zeszyt 4 (October 2021)

Tom 11 (2021): Zeszyt 3 (July 2021)

Tom 11 (2021): Zeszyt 2 (April 2021)

Tom 11 (2021): Zeszyt 1 (January 2021)

Tom 10 (2020): Zeszyt 4 (October 2020)

Tom 10 (2020): Zeszyt 3 (July 2020)

Tom 10 (2020): Zeszyt 2 (April 2020)

Tom 10 (2020): Zeszyt 1 (January 2020)

Tom 9 (2019): Zeszyt 4 (October 2019)

Tom 9 (2019): Zeszyt 3 (July 2019)

Tom 9 (2019): Zeszyt 2 (April 2019)

Tom 9 (2019): Zeszyt 1 (January 2019)

Tom 8 (2018): Zeszyt 4 (October 2018)

Tom 8 (2018): Zeszyt 3 (July 2018)

Tom 8 (2018): Zeszyt 2 (April 2018)

Tom 8 (2018): Zeszyt 1 (January 2018)

Tom 7 (2017): Zeszyt 4 (October 2017)

Tom 7 (2017): Zeszyt 3 (July 2017)

Tom 7 (2017): Zeszyt 2 (April 2017)

Tom 7 (2017): Zeszyt 1 (January 2017)

Tom 6 (2016): Zeszyt 4 (October 2016)

Tom 6 (2016): Zeszyt 3 (July 2016)

Tom 6 (2016): Zeszyt 2 (April 2016)

Tom 6 (2016): Zeszyt 1 (January 2016)

Tom 5 (2015): Zeszyt 4 (October 2015)

Tom 5 (2015): Zeszyt 3 (July 2015)

Tom 5 (2015): Zeszyt 2 (April 2015)

Tom 5 (2015): Zeszyt 1 (January 2015)

Tom 4 (2014): Zeszyt 4 (October 2014)

Tom 4 (2014): Zeszyt 3 (July 2014)

Tom 4 (2014): Zeszyt 2 (April 2014)

Tom 4 (2014): Zeszyt 1 (January 2014)

Tom 3 (2013): Zeszyt 4 (October 2013)

Tom 3 (2013): Zeszyt 3 (July 2013)

Tom 3 (2013): Zeszyt 2 (April 2013)

Tom 3 (2013): Zeszyt 1 (January 2013)

Informacje o czasopiśmie
Format
Czasopismo
eISSN
2449-6499
Pierwsze wydanie
30 Dec 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Wyszukiwanie

Tom 4 (2014): Zeszyt 2 (April 2014)

Informacje o czasopiśmie
Format
Czasopismo
eISSN
2449-6499
Pierwsze wydanie
30 Dec 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Wyszukiwanie

5 Artykułów
access type Otwarty dostęp

Population Diversity Maintenance In Brain Storm Optimization Algorithm

Data publikacji: 01 Mar 2015
Zakres stron: 83 - 97

Abstrakt

Abstract

The convergence and divergence are two common phenomena in swarm intelligence. To obtain good search results, the algorithm should have a balance on convergence and divergence. The premature convergence happens partially due to the solutions getting clustered together, and not diverging again. The brain storm optimization (BSO), which is a young and promising algorithm in swarm intelligence, is based on the collective behavior of human being, that is, the brainstorming process. The convergence strategy is utilized in BSO algorithm to exploit search areas may contain good solutions. The new solutions are generated by divergence strategy to explore new search areas. Premature convergence also happens in the BSO algorithm. The solutions get clustered after a few iterations, which indicate that the population diversity decreases quickly during the search. A definition of population diversity in BSO algorithm is introduced in this paper to measure the change of solutions’ distribution. The algorithm's exploration and exploitation ability can be measured based on the change of population diversity. Different kinds of partial reinitialization strategies are utilized to improve the population diversity in BSO algorithm. The experimental results show that the performance of the BSO is improved by part of solutions re-initialization strategies.

access type Otwarty dostęp

Applying LCS To Affective Image Classification In Spatial-Frequency Domain

Data publikacji: 01 Mar 2015
Zakres stron: 99 - 123

Abstrakt

Abstract

Recent studies have utilizes color, texture, and composition information of images to achieve affective image classification. However, the features related to spatial-frequency domain that were proven to be useful for traditional pattern recognition have not been tested in this field yet. Furthermore, the experiments conducted by previous studies are not internationally-comparable due to the experimental paradigm adopted. In addition, contributed by recent advances in methodology, that are, Hilbert-Huang Transform (HHT) (i.e. Empirical Mode Decomposition (EMD) and Hilbert Transform (HT)), the resolution of frequency analysis has been improved. Hence, the goal of this research is to achieve the affective image-classification task by adopting a standard experimental paradigm introduces by psychologists in order to produce international-comparable and reproducible results; and also to explore the affective hidden patterns of images in the spatial-frequency domain. To accomplish these goals, multiple human-subject experiments were conducted in laboratory. Extended Classifier Systems (XCSs) was used for model building because the XCS has been applied to a wide range of classification tasks and proved to be competitive in pattern recognition. To exploit the information in the spatial-frequency domain, the traditional EMD has been extended to a two-dimensional version. To summarize, the model built by using the XCS achieves Area Under Curve (AUC) = 0.91 and accuracy rate over 86%. The result of the XCS was compared with other traditional machine-learning algorithms (e.g., Radial-Basis Function Network (RBF Network)) that are normally used for classification tasks. Contributed by proper selection of features for model building, user-independent findings were obtained. For example, it is found that the horizontal visual stimulations contribute more to the emotion elicitation than the vertical visual stimulation. The effect of hue, saturation, and brightness; is also presented.

access type Otwarty dostęp

Effect Of Robot Utterances Using Onomatopoeia On Collaborative Learning

Data publikacji: 01 Mar 2015
Zakres stron: 125 - 131

Abstrakt

Abstract

We investigated the effect of robot’s utterances using onomatopoeia in collaborative learning. The robot was designed to provide encouragement using onomatopoeia when students are given problems to be solved issued by a learning system. Eight college students used a mathematics learning system with a robot for three weeks and then took exams. The results indicated that the robot using utterances with onomatopoeia could comfort learners more than the robot without onomatopoeia. It suggests that the robot that praises or comforts using onomatopoeia helps learners maintain their motivation in collaborative learning.

access type Otwarty dostęp

Automated Approach To Classification Of Mine-Like Objects Using Multiple-Aspect Sonar Images

Data publikacji: 01 Mar 2015
Zakres stron: 133 - 148

Abstrakt

Abstract

In this paper, the detection of mines or other objects on the seabed from multiple side-scan sonar views is considered. Two frameworks are provided for this kind of classification. The first framework is based upon the Dempster–Shafer (DS) concept of fusion from a single-view kernel-based classifier and the second framework is based upon the concepts of multi-instance classifiers. Moreover, we consider the class imbalance problem which is always presents in sonar image recognition. Our experimental results show that both of the presented frameworks can be used in mine-like object classification and the presented methods for multi-instance class imbalanced problem are also effective in such classification.

access type Otwarty dostęp

Web–Based Framework For Breast Cancer Classification

Data publikacji: 01 Mar 2015
Zakres stron: 149 - 162

Abstrakt

Abstract

The aim of this work is to create a web-based system that will assist its users in the cancer diagnosis process by means of automatic classification of cytological images obtained during fine needle aspiration biopsy. This paper contains a description of the study on the quality of the various algorithms used for the segmentation and classification of breast cancer malignancy. The object of the study is to classify the degree of malignancy of breast cancer cases from fine needle aspiration biopsy images into one of the two classes of malignancy, high or intermediate. For that purpose we have compared 3 segmentation methods: k-means, fuzzy c-means and watershed, and based on these segmentations we have constructed a 25–element feature vector. The feature vector was introduced as an input to 8 classifiers and their accuracy was checked.

The results show that the highest classification accuracy of 89.02 % was recorded for the multilayer perceptron. Fuzzy c–means proved to be the most accurate segmentation algorithm, but at the same time it is the most computationally intensive among the three studied segmentation methods.

5 Artykułów
access type Otwarty dostęp

Population Diversity Maintenance In Brain Storm Optimization Algorithm

Data publikacji: 01 Mar 2015
Zakres stron: 83 - 97

Abstrakt

Abstract

The convergence and divergence are two common phenomena in swarm intelligence. To obtain good search results, the algorithm should have a balance on convergence and divergence. The premature convergence happens partially due to the solutions getting clustered together, and not diverging again. The brain storm optimization (BSO), which is a young and promising algorithm in swarm intelligence, is based on the collective behavior of human being, that is, the brainstorming process. The convergence strategy is utilized in BSO algorithm to exploit search areas may contain good solutions. The new solutions are generated by divergence strategy to explore new search areas. Premature convergence also happens in the BSO algorithm. The solutions get clustered after a few iterations, which indicate that the population diversity decreases quickly during the search. A definition of population diversity in BSO algorithm is introduced in this paper to measure the change of solutions’ distribution. The algorithm's exploration and exploitation ability can be measured based on the change of population diversity. Different kinds of partial reinitialization strategies are utilized to improve the population diversity in BSO algorithm. The experimental results show that the performance of the BSO is improved by part of solutions re-initialization strategies.

access type Otwarty dostęp

Applying LCS To Affective Image Classification In Spatial-Frequency Domain

Data publikacji: 01 Mar 2015
Zakres stron: 99 - 123

Abstrakt

Abstract

Recent studies have utilizes color, texture, and composition information of images to achieve affective image classification. However, the features related to spatial-frequency domain that were proven to be useful for traditional pattern recognition have not been tested in this field yet. Furthermore, the experiments conducted by previous studies are not internationally-comparable due to the experimental paradigm adopted. In addition, contributed by recent advances in methodology, that are, Hilbert-Huang Transform (HHT) (i.e. Empirical Mode Decomposition (EMD) and Hilbert Transform (HT)), the resolution of frequency analysis has been improved. Hence, the goal of this research is to achieve the affective image-classification task by adopting a standard experimental paradigm introduces by psychologists in order to produce international-comparable and reproducible results; and also to explore the affective hidden patterns of images in the spatial-frequency domain. To accomplish these goals, multiple human-subject experiments were conducted in laboratory. Extended Classifier Systems (XCSs) was used for model building because the XCS has been applied to a wide range of classification tasks and proved to be competitive in pattern recognition. To exploit the information in the spatial-frequency domain, the traditional EMD has been extended to a two-dimensional version. To summarize, the model built by using the XCS achieves Area Under Curve (AUC) = 0.91 and accuracy rate over 86%. The result of the XCS was compared with other traditional machine-learning algorithms (e.g., Radial-Basis Function Network (RBF Network)) that are normally used for classification tasks. Contributed by proper selection of features for model building, user-independent findings were obtained. For example, it is found that the horizontal visual stimulations contribute more to the emotion elicitation than the vertical visual stimulation. The effect of hue, saturation, and brightness; is also presented.

access type Otwarty dostęp

Effect Of Robot Utterances Using Onomatopoeia On Collaborative Learning

Data publikacji: 01 Mar 2015
Zakres stron: 125 - 131

Abstrakt

Abstract

We investigated the effect of robot’s utterances using onomatopoeia in collaborative learning. The robot was designed to provide encouragement using onomatopoeia when students are given problems to be solved issued by a learning system. Eight college students used a mathematics learning system with a robot for three weeks and then took exams. The results indicated that the robot using utterances with onomatopoeia could comfort learners more than the robot without onomatopoeia. It suggests that the robot that praises or comforts using onomatopoeia helps learners maintain their motivation in collaborative learning.

access type Otwarty dostęp

Automated Approach To Classification Of Mine-Like Objects Using Multiple-Aspect Sonar Images

Data publikacji: 01 Mar 2015
Zakres stron: 133 - 148

Abstrakt

Abstract

In this paper, the detection of mines or other objects on the seabed from multiple side-scan sonar views is considered. Two frameworks are provided for this kind of classification. The first framework is based upon the Dempster–Shafer (DS) concept of fusion from a single-view kernel-based classifier and the second framework is based upon the concepts of multi-instance classifiers. Moreover, we consider the class imbalance problem which is always presents in sonar image recognition. Our experimental results show that both of the presented frameworks can be used in mine-like object classification and the presented methods for multi-instance class imbalanced problem are also effective in such classification.

access type Otwarty dostęp

Web–Based Framework For Breast Cancer Classification

Data publikacji: 01 Mar 2015
Zakres stron: 149 - 162

Abstrakt

Abstract

The aim of this work is to create a web-based system that will assist its users in the cancer diagnosis process by means of automatic classification of cytological images obtained during fine needle aspiration biopsy. This paper contains a description of the study on the quality of the various algorithms used for the segmentation and classification of breast cancer malignancy. The object of the study is to classify the degree of malignancy of breast cancer cases from fine needle aspiration biopsy images into one of the two classes of malignancy, high or intermediate. For that purpose we have compared 3 segmentation methods: k-means, fuzzy c-means and watershed, and based on these segmentations we have constructed a 25–element feature vector. The feature vector was introduced as an input to 8 classifiers and their accuracy was checked.

The results show that the highest classification accuracy of 89.02 % was recorded for the multilayer perceptron. Fuzzy c–means proved to be the most accurate segmentation algorithm, but at the same time it is the most computationally intensive among the three studied segmentation methods.

Zaplanuj zdalną konferencję ze Sciendo