Otwarty dostęp

A Robust Path Following Algorithm Based on the Orthogonal Bishop Parametrization for A non–Holonomic Mobile Manipulator

 oraz   
24 cze 2025

Zacytuj
Pobierz okładkę

Abadi, A.S.S., Hosseinabadi, P.A., Mekhilef, S. and Ordys, A. (2020). A new strongly predefined time sliding mode controller for a class of cascade high-order nonlinear systems, Archives of Control Sciences 30(3): 599–620, DOI: 10.24425/acs.2020.134679. Search in Google Scholar

Bartoszewicz, A. and Adamiak, K. (2019). A reference trajectory based discrete time sliding mode control strategy, International Journal of Applied Mathematics and Computer Science 29(3): 517–525, DOI: 10.2478/amcs-2019-0038. Search in Google Scholar

Bishop, R.L. (1975). There is more than one way to frame a curve, The American Mathematical Monthly 82(3): 246–251, DOI: 10.2307/2319846. Search in Google Scholar

Campion, G., Bastin, G. and D’Andréa-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Transactions on Robotics and Automation 12: 47–61, DOI: 10.1109/70.481750. Search in Google Scholar

Canudas de Wit, C., Bastin, G. and Siciliano, B. (1996). Theory of Robot Control, 1st edn, Springer, London. Search in Google Scholar

Carroll, D., Köse, E. and Sterling, I. (2013). Improving Frenet’s frame using Bishop’s frame, Journal of Mathematics Research 5: 97–106, DOI:10.5539/jmr.v5n4p97. Search in Google Scholar

Cichella, V., Kaminer, I., Xargay, E., Dobrokhodov, V., Hovakimyan, N., Aguiar, A.P. and Pascoal, A.M. (2012). A Lyapunov-based approach for time-coordinated 3D path-following of multiple quadrotors, Proceedings of the 51st Annual IEEE Conference on Decision and Control, Maui, Hawaii, USA, pp. 1776–1781. Search in Google Scholar

Costa, M.M. and Silva, M.F. (2019). A survey on path planning algorithms for mobile robots, 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Porto, Portugal, pp. 1–7, DOI: 10.1109/ICARSC.2019.8733623. Search in Google Scholar

Dulęba, I. (2000). Modeling and control of mobile manipulators, IFAC Proceedings Volumes 33(27): 447–452, DOI: 10.1016/S1474-6670(17)37970-3. Search in Google Scholar

Dyba, F. (2023). Experimental validation of the non-orthogonal Serret-Frenet parametrization applied to the path following task, Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, Rome, Italy, pp. 608–615, DOI: 10.5220/0012164200003543. Search in Google Scholar

Dyba, F. (2024). Parallel position and orientation control for a redundant manipulator performing the path following task, 13th International Workshop on Robot Motion and Control (RoMoCo), Poznan, Poland, pp. 199–204, DOI: 10.1109/RoMoCo60539.2024.10604337. Search in Google Scholar

Dyba, F. and Mazur, A. (2024). Comparison of curvilinear parametrization methods and avoidance of orthogonal singularities in the path following task, Journal of Automation, Mobile Robotics and Intelligent Systems 17(3): 46–64, DOI: 10.14313/JAMRIS/3-2023/22. Search in Google Scholar

Encarnação, P. and Pascoal, A. (2000). 3D path following for autonomous underwater vehicle, Proceedings of the 39th IEEE Conference on Decision and Control, Vol. 3, Sydney, NSW, Australia, pp. 2977–2982, DOI: 10.1109/CDC.2000.914272. Search in Google Scholar

Frenet, F. (1852). Sur les courbes à double courbure, Journal de Mathématiques Pures et Appliquées, 17: 437–447, http://eudml.org/doc/233946. Search in Google Scholar

Galicki, M. (2006). Adaptive control of kinematically redundant manipulator along a prescribed geometric path, in K. Kozłowski (Ed.), Robot Motion and Control, Lecture Notes in Control and Information Sciences, Vol. 335, Springer, London, pp. 129–139. Search in Google Scholar

Gonçalves, V.M., Adorno, B.V., Crosnier, A. and Fraisse, P. (2020). Stable-by-design kinematic control based on optimization, IEEE Transactions on Robotics 36(3): 644–656, DOI: 10.1109/TRO.2019.2963665. Search in Google Scholar

Gonçalves, V.M., Pimenta, L.C.A., Maia, C.A., Dutra, B.C.O. and Pereira, G.A.S. (2010). Vector fields for robot navigation along time-varying curves in n-dimensions, IEEE Transactions on Robotics 26(4): 647–659, DOI: 10.1109/TRO.2010.2053077. Search in Google Scholar

Hung, N., Rego, F., Quintas, J., Cruz, J., Jacinto, M., Souto, D., Potes, A., Sebastiao, L. and Pascoal, A. (2023). A review of path following control strategies for autonomous robotic vehicles: Theory, simulations, and experiments, Journal of Field Robotics 40(3): 747–779, DOI: 10.1002/rob.22142. Search in Google Scholar

Jafarzadeh, H. and Fleming, C. H. (2018). An exact geometry–based algorithm for path planning, International Journal of Applied Mathematics and Computer Science 28(3): 493–504, DOI: 10.2478/amcs-2018-0038. Search in Google Scholar

Kapitanyuk, Y.A., Proskurnikov, A.V. and Cao, M. (2018). A guiding vector-field algorithm for path-following control of nonholonomic mobile robots, IEEE Transactions on Control Systems Technology 26(4): 1372–1385, DOI: 10.1109/TCST.2017.2705059. Search in Google Scholar

Kozłowski, K. and Pazderski, D. (2004). Modeling and control of a 4-wheel skid-steering mobile robot, International Journal of Applied Mathematics and Computer Science 14(4): 477–496. Search in Google Scholar

Krstić, M., Kanellakopoulos, I. and Kokotović, P.V. (1995). Nonlinear and Adaptive Control Design, Wiley, New York, USA. Search in Google Scholar

Lee, J.M. (1997). Riemannian Manifolds: An Introduction to Curvature, Springer, New York. Search in Google Scholar

Li, X., Zhao, G. and Li, B. (2020). Generating optimal path by level set approach for a mobile robot moving in static/dynamic environments, Applied Mathematical Modelling 85: 210–230, DOI: 10.1016/j.apm.2020.03.034. Search in Google Scholar

Liao, Y.-L., Zhang, M.-J. and Wan, L. (2015). Serret–Frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties, Journal of Central South University 22: 214–223, DOI: 10.1007/s11771-015-2512-z. Search in Google Scholar

Liu, H. and Pei, D. (2013). Singularities of a space curve according to the relatively parallel adapted frame and its visualization, Mathematical Problems in Engineering 2013(512020): 1–12, DOI: 10.1155/2013/512020. Search in Google Scholar

Lugo-Cárdenas, I., Salazar, S. and Lozano, R. (2017). Lyapunov based 3D path following kinematic controller for a fixed wing UAV, IFAC-PapersOnLine 50(1): 15946–15951, DOI: 10.1016/j.ifacol.2017.08.1747. Search in Google Scholar

Mazur, A. (2004). Hybrid adaptive control laws solving a path following problem for non-holonomic mobile manipulators, International Journal of Control 77(15): 1297–1306, DOI: 10.1080/0020717042000297162. Search in Google Scholar

Mazur, A. (2010). Trajectory tracking control in workspace-defined tasks for nonholonomic mobile manipulators, Robotica 28(1): 57–68, DOI: 10.1017/S0263574709005578. Search in Google Scholar

Mazur, A. and Dyba, F. (2023). The non-orthogonal serret–frenet parametrization applied to the path following problem of a manipulator with partially known dynamics, Archives of Control Sciences 33(2): 339–370, DOI: 10.24425/acs.2023.146279. Search in Google Scholar

Mazur, A. and Płaskonka, J. (2012). The Serret–Frenet parametrization in a control of a mobile manipulator of (nh, h) type, IFAC Proceedings Volumes 45(22): 405–410, DOI: 10.3182/20120905-3-HR-2030.00069. Search in Google Scholar

Mazur, A., Płaskonka, J. and Kaczmarek, M. (2015). Following 3D paths by a manipulator, Archives of Control Sciences 25(1): 117–133, DOI: 10.1515/acsc-2015-0008. Search in Google Scholar

Mazur, A. and Szakiel, D. (2009). On path following control of nonholonomic mobile manipulators, International Journal of Applied Mathematics and Computer Science 19(4): 561–574. Search in Google Scholar

Micaelli, A. and Samson, C. (1993). Trajectory tracking for unicycle-type and two-steering-wheels mobile robots, Technical Report No. 2097, INRIA, Sophia-Antipolis. Search in Google Scholar

Michałek, M. and Kozłowski, K. (2009). Motion planning and feedback control for a unicycle in a way point following task: The VFO approach, International Journal of Applied Mathematics and Computer Science 19(4): 533–545, DOI: 10.1007/s10846-017-0482-0. Search in Google Scholar

Michałek, M.M. and Gawron, T. (2018). VFO Path following control with guarantees of positionally constrained transients for unicycle-like robots with constrained control input, Journal of Intelligent and Robotic Systems: Theory and Applications 89(1-2): 191 – 210. Search in Google Scholar

Oprea, J. (1997). Differential Geometry and Its Applications, Prentice Hall, Michigan University. Search in Google Scholar

Pepy, R., Kieffer, M. and Walter, E. (2009). Reliable robust path planning with application to mobile robots, International Journal of Applied Mathematics and Computer Science 19(3): 413–424, DOI: 10.2478/v10006-009-0034-2. Search in Google Scholar

Przybylski, M. and Putz, B. (2017). D* Extra Lite: A dynamic A* with search–tree cutting and frontier–gap repairing, International Journal of Applied Mathematics and Computer Science 27(2): 273–290, DOI: 10.1515/amcs-2017-0020. Search in Google Scholar

Rezende, A.M.C., Goncalves, V.M. and Pimenta, L.C.A. (2022). Constructive time-varying vector fields for robot navigation, IEEE Transactions on Robotics 38(2): 852–867, DOI: 10.1109/TRO.2021.3093674. Search in Google Scholar

Selig, J.M. and Wu, Y. (2006). Interpolated rigid-body motions and robotics, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 1086–1091, DOI: 10.1109/IROS.2006.281815. Search in Google Scholar

Serret, J.-A. (1851). Sur quelques formules relatives à la théorie des courbes à double courbure, Journal de Mathématiques Pures et Appliquées, 16: 193–207. Search in Google Scholar

Slotine, J.-J. and Li, W. (1991). Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, N.J. Search in Google Scholar

Soetanto, D., Lapierre, L. and Pascoal, A. (2003). Adaptive, non-singular path-following control of dynamic wheeled robots, Proceedings of the 42nd IEEE International Conference on Decision and Control, Vol. 2, Maui, HI, pp. 1765–1770, DOI: 10.1109/CDC.2003.1272868. Search in Google Scholar

Spong, M. and Vidyasagar, M. (1991). Robot Dynamics and Control, Wiley, New York. Search in Google Scholar

Sun, K. and Liu, X. (2021). Path planning for an autonomous underwater vehicle in a cluttered underwater environment based on the heat method, International Journal of Applied Mathematics and Computer Science 31(2): 289–301, DOI: 10.34768/amcs-2021-0019. Search in Google Scholar

Utkin, V.I. (1992). Sliding Modes in Control and Optimization, Springer, Berlin. Search in Google Scholar

Yamamoto, Y. and Yun, X. (1996). Effect of the dynamic interaction on coordinated control of mobile manipulators, IEEE Transactions on Robotics and Automation 12(5): 816–824, DOI: 10.1109/70.538986. Search in Google Scholar

Yao, W., de Marina, H.G., Lin, B. and Cao, M. (2021). Singularity-free guiding vector field for robot navigation, IEEE Transactions on Robotics 37(4): 1206–1221, DOI: 10.1109/TRO.2020.3043690. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Matematyka, Matematyka stosowana