1. bookTom 31 (2021): Zeszyt 2 (June 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2083-8492
Pierwsze wydanie
05 Apr 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Open Access

Path planning for an autonomous underwater vehicle in a cluttered underwater environment based on the heat method

Data publikacji: 08 Jul 2021
Tom & Zeszyt: Tom 31 (2021) - Zeszyt 2 (June 2021)
Zakres stron: 289 - 301
Otrzymano: 14 Jul 2020
Przyjęty: 03 Dec 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2083-8492
Pierwsze wydanie
05 Apr 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Chen, J., Zhu, H., Zhang, L. and Sun, Y. (2018). Research on fuzzy control of path tracking for underwater vehicle based on genetic algorithm optimization, Ocean Engineering 156: 217–223.10.1016/j.oceaneng.2018.03.010 Search in Google Scholar

Cheng, C., Zhu, D., Bing, S., Chu, Z. and Sheng, Z. (2015). Path planning for autonomous underwater vehicle based on artificial potential field and velocity synthesis, 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering, Halifax, Canada, pp. 717–721. Search in Google Scholar

Cohen, L.D. and Kimmel, R. (1997). Global minimum for active contour models: A minimal path approach, International Journal of Computer Vision 24(1): 57–78.10.1109/CVPR.1996.517144 Search in Google Scholar

Crane, K.,Weischedel, C. andWardetzky, M. (2012). Geodesics in heat, Computer Science 12(9): 1–10. Search in Google Scholar

Crane, K.,Weischedel, C. andWardetzky, M. (2013). Geodesics in heat: A new approach to computing distance based on heat flow, ACM Transactions on Graphics 32(5): 152.10.1145/2516971.2516977 Search in Google Scholar

Crane, K., Weischedel, C. and Wardetzky, M. (2017). The heat method for distance computation, Communications of the ACM 60(11): 90–99.10.1145/3131280 Search in Google Scholar

Hedjar, R. and Bounkhel, M. (2019). An automatic collision avoidance algorithm for multiple marine surface vehicles, International Journal of Applied Mathematics and Computer Science 29(4): 759–768, DOI: 10.2478/amcs-2019-0056.10.2478/amcs-2019-0056 Search in Google Scholar

Klaučo, M., Blažek, S. and Kvasnica, M. (2016). An optimal path planning problem for heterogeneous multi-vehicle systems, International Journal of Applied Mathematics and Computer Science 26(2): 297–308, DOI: 10.1515/amcs-2016-0021.10.1515/amcs-2016-0021 Search in Google Scholar

Koay, T.-B. and Chitre, M. (2013). Energy-efficient path planning for fully propelled AUVs in congested coastal waters, OCEANS 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension, Bergen, Norway, pp. 1–9. Search in Google Scholar

Lolla, T., Ueckermann, M., Yi, K., Haley Jr., K. and Lermusiaux, P. (2012). Path planning in time dependent flow fields using level set methods, IEEE International Conference on Robotics and Automation, Saint Paul, USA, pp. 166–173. Search in Google Scholar

MahmoudZadeh, S., Yazdani, A., Sammut, K. and Powers, D. (2017). Online path planning for AUV rendezvous in dynamic cluttered undersea environment using evolutionary algorithms, Applied Soft Computing 70(9): 929–945.10.1016/j.asoc.2017.10.025 Search in Google Scholar

Makdah, A.A.R.A., Daher, N., Asmar, D. and Shammas, E. (2019). Three-dimensional trajectory tracking of a hybrid autonomous underwater vehicle in the presence of underwater current, Ocean Engineering 185: 115–132.10.1016/j.oceaneng.2019.05.030 Search in Google Scholar

Mirebeau, J.-M. (2014). Anisotropic fast-marching on Cartesian grids using lattice basis reduction, SIAM Journal on Numerical Analysis 52(4): 1573–1599.10.1137/120861667 Search in Google Scholar

Mirebeau, J.-M. (2018). Fast-marching methods for curvature penalized shortest paths, Journal of Mathematical Imaging and Vision 60: 784–815.10.1007/s10851-017-0778-5 Search in Google Scholar

Niu, H., Ji, Z., Savvaris, A. and Tsourdos, A. (2020). Energy efficient path planning for unmanned surface vehicle in spatially-temporally variant environment, Ocean Engineering 196: 106766.10.1016/j.oceaneng.2019.106766 Search in Google Scholar

Niu, H., Lu, Y., Savvaris, A. and Tsourdos, A. (2018). An energy-efficient path planning algorithm for unmanned surface vehicles, Ocean Engineering 161: 308–321.10.1016/j.oceaneng.2018.01.025 Search in Google Scholar

Pêtrès, C., Pailhas, Y., Patrón, P., Petillot, Y. and David, L. (2007). Path planning for autonomous underwater vehicles, IEEE Transactions on Robotics 23(2): 331–341.10.1109/TRO.2007.895057 Search in Google Scholar

Peyré, G., Péchaud, M., Keriven, R. and Cohen, L. (2010). Geodesic methods in computer vision and graphics, Foundations and Trends in Computer Graphics and Vision 5(3–4): 197–397.10.1561/0600000029 Search in Google Scholar

Singh, Y., Sharma, S., Sutton, R., Hatton, D. and Khan, A. (2018). A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents, Ocean Engineering 169: 187–201.10.1016/j.oceaneng.2018.09.016 Search in Google Scholar

Song, R., Liu, W., Liu, Y. and Bucknall, R. (2015). A two-layered fast marching path planning algorithm for an unmanned surface vehicle operating in a dynamic environment, OCEANS 2015, Genova, Italy, pp. 1–8. Search in Google Scholar

Song, R., Liu, Y. and Bucknall, R. (2017). A multi-layered fast marching method for unmanned surface vehicle path planning in a time-variant maritime environment, Ocean Engineering 129: 301–317.10.1016/j.oceaneng.2016.11.009 Search in Google Scholar

Soulignac, M. (2011). Feasible and optimal path planning in strong current fields, IEEE Transactions on Robotics 27(1): 89–98.10.1109/TRO.2010.2085790 Search in Google Scholar

Soulignac, M., Taillibert, P. and Rueher, M. (2008). Adapting the wavefront expansion in presence of strong currents, IEEE International Conference on Robotics and Automation, Pasadena, USA, pp. 1352–1358. Search in Google Scholar

Witt, J. and Dunbabin, M. (2008). Go with the flow: Optimal AUV path planning in coastal environments, Proceedings of the 2008 Australasian Conference on Robotics and Automation, Sydney, Australia, pp. 1–9. Search in Google Scholar

Wu, Y. (2019). Coordinated path planning for an unmanned aerial-aquatic vehicle (UAAV) and an autonomous underwater vehicle (AUV) in an underwater target strike mission, Ocean Engineering 182: 162–173.10.1016/j.oceaneng.2019.04.062 Search in Google Scholar

Yang, F., Chai, L., Chen, D. and Cohen, L. (2018). Geodesic via asymmetric heat diffusion based on Finsler metric, Asian Conference on Computer Vision, Perth, Australia, pp. 371–386. Search in Google Scholar

Yang, F. and Cohen, L.D. (2016). Geodesic distance and curves through isotropic and anisotropic heat equations on images and surfaces, Journal of Mathematical Imaging and Vision 55(2): 210–228.10.1007/s10851-015-0621-9 Search in Google Scholar

Zeng, Z., Lian, L., Sammut, K., He, F., Tang, Y. and Lammas, A. (2015). A survey on path planning for persistent autonomy of autonomous underwater vehicles, Ocean Engineering 110: 303–313.10.1016/j.oceaneng.2015.10.007 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo