1. bookTom 31 (2021): Zeszyt 2 (June 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2083-8492
Pierwsze wydanie
05 Apr 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Open Access

Dynamic location models of mobile sensors for travel time estimation on a freeway

Data publikacji: 08 Jul 2021
Tom & Zeszyt: Tom 31 (2021) - Zeszyt 2 (June 2021)
Zakres stron: 271 - 287
Otrzymano: 01 Dec 2020
Przyjęty: 10 Apr 2021
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2083-8492
Pierwsze wydanie
05 Apr 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Ban, X., Chu, L., Herring, R. and Margulici, J. (2011). Sequential modeling framework for optimal sensor placement for multiple intelligent transportation system applications, Journal of Transportation Engineering 137(2): 112–120.10.1061/(ASCE)TE.1943-5436.0000196 Search in Google Scholar

Ban, X., Herring, R., Margulici, J. and Bayen, A. (2009). Optimal sensor placement for travel time estimation, Transportation and Traffic Theory 2009: 697–721.10.1007/978-1-4419-0820-9_34 Search in Google Scholar

Bartin, B., Ozbay, K. and Iyigun, C. (2007). A clustering based methodology for determining optimal roadway configuration of detectors for travel time estimation, Transportation Research Record 2000: 98–105.10.3141/2000-12 Search in Google Scholar

Beryini, R. and Lovell, D. (2009). Impacts of sensor spacing on accurate freeway travel time estimation for traveler information, Journal of Intelligent Transportation Systems 13(2): 97–110.10.1080/15472450902858400 Search in Google Scholar

Chakraborty, P., Hegde, C. and Sharma, A. (2019). Data-driven parallelizable traffic incident detection using spatio-temporally denoised robust thresholds, Transportation Research C 105: 81–99.10.1016/j.trc.2019.05.034 Search in Google Scholar

Chang, B.-J., Hwang, R.-H., Tsai, Y.-L., Yu, B.-H. and Liang, Y.-H. (2019). Cooperative adaptive driving for platooning autonomous self driving based on edge computing, International Journal of Applied Mathematics and Computer Science 29(2): 213–225, DOI: 10.2478/amcs-2019-0016.10.2478/amcs-2019-0016 Search in Google Scholar

Chaudhuri, P.,Martin, P.T., Stevanovic, A.Z. and Zhu, C. (2010). The effects of detector spacing on travel time prediction on freeways, World Academy of Science, Engineering and Technology 42(6): 1–10. Search in Google Scholar

Chou, J.-J., Shih, C.-S., Wang, W.-D. and Huang, K.-C. (2019). IoT sensing networks for gait velocity measurement, International Journal of Applied Mathematics and Computer Science 29(2): 245–259, DOI: 10.2478/amcs-2019-0018.10.2478/amcs-2019-0018 Search in Google Scholar

Chow, J. (2016). Dynamic UAV-based traffic monitoring under uncertainty as a stochastic arc-inventory routing policy, International Journal of Transportation Science and Technology 5(3): 167–185.10.1016/j.ijtst.2016.11.002 Search in Google Scholar

Danczyk, A., Di, X. and Liu, H. (2016). A probabilistic optimization model for allocating freeway sensors, Transportation Research C 67: 378–398.10.1016/j.trc.2016.02.015 Search in Google Scholar

Danczyk, A. and Liu, H. (2011). A mixed-integer linear program for optimizing sensor locations along freeway corridors, Transportation Research Part B 45(1): 208–217.10.1016/j.trb.2010.04.002 Search in Google Scholar

Fischetti, M. and Monaci, M. (2020). A branch-and-cut algorithm for mixed-integer bilinear programming, European Journal of Operational Research 282(2): 506–514.10.1016/j.ejor.2019.09.043 Search in Google Scholar

Fu, C., Zhu, N. and Ma, S. (2017). A stochastic program approach for path reconstruction oriented sensor location model, Transportation Research Part B 102: 210–237.10.1016/j.trb.2017.05.013 Search in Google Scholar

Fujito, I., Margiotta, R., Huang, W. and Perez, W.A. (2006). Effect of sensor spacing on performance measure calculations, Journal of the Transportation Research Board 1945: 1–11.10.1177/0361198106194500102 Search in Google Scholar

Geetla, T., Batta, R., Blatt, A., Flanigan, M. and Majka, K. (2014). Optimal placement of omnidirectional sensors in a transportation network for effective emergency response and crash characterization, Transportation Research C 45: 64–82.10.1016/j.trc.2014.02.024 Search in Google Scholar

Gentili, M. and Mirchandani, P. (2012). Locating sensors on traffic networks: Models, challenges and research opportunities, Transportation Research C 24: 227–255.10.1016/j.trc.2012.01.004 Search in Google Scholar

Gentili, M. and Mirchandani, P. (2018). Review of optimal sensor location models for travel time estimation, Transportation Research C 90: 74–96.10.1016/j.trc.2018.01.021 Search in Google Scholar

He, S. (2013). A graphical approach to identify sensor locations for link flow inference, Transportation Research B 51: 65–76.10.1016/j.trb.2013.02.006 Search in Google Scholar

Hong, Z. and Fukuda, D. (2012). Effects of traffic sensor location on traffic state estimation, Procedia-Social and Behavioral Sciences 54(2290): 1186–1196.10.1016/j.sbspro.2012.09.833 Search in Google Scholar

Karatsoli, M., Margreiter, M. and Spangler, M. (2017). Bluetooth-based travel times for automatic incident detection-a systematic description of the characteristics for traffic management purposes, Transportation Research Procedia 24: 204–211.10.1016/j.trpro.2017.05.109 Search in Google Scholar

Kianfar, J. and Edara, P. (2010). Optimizing freeway traffic sensor locations by clustering global-positioning-system-derived speed patterns, IEEE Transactions on Intelligent Transportation Systems 11(3): 738–747.10.1109/TITS.2010.2051329 Search in Google Scholar

Kim, J., Park, B., Lee, J. and Won, J. (2011). Determining optimal sensor locations in freeway using genetic algorithm-based optimization, Engineering Applications of Artificial Intelligence 24(2): 318–324.10.1016/j.engappai.2010.10.020 Search in Google Scholar

Kolak, O., Feyzioğlu, O. and Noyan, N. (2018). Bi-level multi-objective traffic network optimisation with sustainability perspective, Expert Systems with Applications 104(15): 294–306.10.1016/j.eswa.2018.03.034 Search in Google Scholar

Kolosz, B., Grant-Muller, S. and Djemame, K. (2013). Modelling uncertainty in the sustainability of intelligent transport systems for highways using probabilistic data fusion, Environmental Modelling & Software 49: 78–97.10.1016/j.envsoft.2013.07.011 Search in Google Scholar

Li, X. and Ouyang, Y. (2011). Reliable sensor deployment for network traffic surveillance, Transportation Research B 45: 218–231.10.1016/j.trb.2010.04.005 Search in Google Scholar

Liu, F. L., Wang, Y., Bai, Y. and Yu, J. (2019). Study on stealth characteristics of metamaterials based on simulated annealing algorithm, Procedia Computer Science 147: 221–227.10.1016/j.procs.2019.01.230 Search in Google Scholar

Liu, H. and Danczyk, A. (2009). Optimal sensor locations for freeway bottleneck identification, Computer-Aided Civil and Infrastructure Engineering 24(8): 535–550.10.1111/j.1467-8667.2009.00614.x Search in Google Scholar

Ma,W. and Qian, Z. (2018). Statistical inference of probabilistic origin-destination demand using day-to-day traffic data, Transportation Research C 88: 227–256.10.1016/j.trc.2017.12.015 Search in Google Scholar

Meng, T., Jing, X., Yan, Z. and Pedrycz, W. (2020). A survey on machine learning for data fusion, Information Fusion 57: 115–229.10.1016/j.inffus.2019.12.001 Search in Google Scholar

Nemati, M., Braun, M. and Tenbohlen, S. (2018). Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming, Applied Energy 210: 944–963.10.1016/j.apenergy.2017.07.007 Search in Google Scholar

Ng, M. (2013). Partial link flow observability in the presence of initial sensors: Solution without path enumeration, Transportation Research E 51: 62–66.10.1016/j.tre.2012.12.002 Search in Google Scholar

Olia, A., Abdelgawad, H., Abdulhai, B. and Razavi, S. (2017). Optimizing the number and locations of freeway roadside equipment units for travel time estimation in a connected vehicle environment, Journal of Intelligent Transportation Systems 21(4): 296–309.10.1080/15472450.2017.1332524 Search in Google Scholar

Park, H. and Haghani, A. (2015). Optimal number and location of bluetooth sensors considering stochastic travel time prediction, Transportation Research C 55: 203–216.10.1016/j.trc.2015.03.023 Search in Google Scholar

Salari, M., Kattan, L., Lam, W., Lo, H. and Esfeh, M. (2019). Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure, Transportation Research Part B 121: 216–251.10.1016/j.trb.2019.01.004 Search in Google Scholar

Song, Z.R., Zang, L.L. and Zhu, W.X. (2020). Study on minimum emission control strategy on arterial road based on improved simulated annealing genetic algorithm, Physica A 537: 1–11.10.1016/j.physa.2019.122691 Search in Google Scholar

Xing, T., Zhou, X. and Taylor, J. (2013). Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach, Transportation Research B 57: 66–90.10.1016/j.trb.2013.09.007 Search in Google Scholar

Yang, Y. and Fan, Y. (2015). Data dependent input control for origin-destination demand estimation using observability analysis, Transportation Research B 78: 385–403.10.1016/j.trb.2015.04.010 Search in Google Scholar

Zhan, F., Wan, X., Zhang, J., Li, R. and Ran, B. (2015). Sample size reduction method based on data fusion for freeways with fixed detectors, Transportation Research Record 2528: 18–26.10.3141/2528-03 Search in Google Scholar

Zhu, N., Fu, C. and Ma, S. (2018). Data-driven distributionally robust optimization approach for reliable travel-time-information-gain-oriented traffic sensor location model, Transportation Research B 113: 91–120.10.1016/j.trb.2018.05.009 Search in Google Scholar

Zhu, N., Liu, Y., Ma, S. and He, Z. (2014). Mobile traffic sensor routing in dynamic transportation systems, IEEE Transactions on Intelligent Transportation Systems 15(5): 2273–2285.10.1109/TITS.2014.2314732 Search in Google Scholar

Zhu, N., Ma, S. and Zheng, L. (2017). Travel time estimation oriented freeway sensor placement problem considering sensor failure, Journal of Intelligent Transportation Systems 21(1): 26–40.10.1080/15472450.2016.1194206 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo