1. bookTom 31 (2021): Zeszyt 2 (June 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2083-8492
Pierwsze wydanie
05 Apr 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Open Access

An outlier–robust neuro–fuzzy system for classification and regression

Data publikacji: 08 Jul 2021
Tom & Zeszyt: Tom 31 (2021) - Zeszyt 2 (June 2021)
Zakres stron: 303 - 319
Otrzymano: 09 Nov 2020
Przyjęty: 09 Feb 2021
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2083-8492
Pierwsze wydanie
05 Apr 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Acı, M. and Avcı, M. (2016). Artificial neural network approach for atomic coordinate prediction of carbon nanotubes, Applied Physics A 122(631).10.1007/s00339-016-0153-1 Search in Google Scholar

Acı, M. and Avcı, M. (2017). Reducing simulation duration of carbon nanotube using support vector regression method, Journal of the Faculty of Engineering and Architecture of Gazi University 32(3): 901–907. Search in Google Scholar

Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O. and Herrera, F. (2006). Hybrid learning models to get the interpretability-accuracy trade-off in fuzzy modeling, Soft Computing 10(9): 717–734.10.1007/s00500-005-0002-1 Search in Google Scholar

Alonso, J.M. and Magdalena, L. (2011). Special issue on interpretable fuzzy systems, Information Sciences 181(20): 4331–4339.10.1016/j.ins.2011.07.001 Search in Google Scholar

Bartczuk, L., Przybyl, A. and Cpalka, K. (2016). A new approach to nonlinear modelling of dynamic systems based on fuzzy rules, International Journal of Applied Mathematics and Computer Science 26(3): 603–621, DOI: 10.1515/amcs-2016-0042.10.1515/amcs-2016-0042 Search in Google Scholar

Cpałka, K., Łapa, K., Przybył, A. and Zalasiński, M. (2014). A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects, Neurocomputing 135: 203–217.10.1016/j.neucom.2013.12.031 Search in Google Scholar

Czogała, E. and Ł˛eski, J. (2000). Fuzzy and Neuro-Fuzzy Intelligent Systems, Physica-Verlag, Heidelberg/New York.10.1007/978-3-7908-1853-6 Search in Google Scholar

Dave, R. and Krishnapuram, R. (1997). Robust clustering methods: A unified view, Fuzzy Systems, IEEE Transactions on 5(2): 270–293.10.1109/91.580801 Search in Google Scholar

de Souza, P.V.C. (2020). Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature, Applied Soft Computing 92: 106275.10.1016/j.asoc.2020.106275 Search in Google Scholar

Dovžan, D. and Škrjanc, I. (2011). Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes, ISA Transactions 50(2): 159–169.10.1016/j.isatra.2011.01.00421292263 Search in Google Scholar

Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact, well separated clusters, Journal Cybernetics 3(3): 32–57.10.1080/01969727308546046 Search in Google Scholar

D’Urso, P. and Leski, J.M. (2020). Fuzzy clustering of fuzzy data based on robust loss functions and ordered weighted averaging, Fuzzy Sets and Systems 389: 1–28.10.1016/j.fss.2019.03.017 Search in Google Scholar

Evsukoff, A.G., Galichet, S., de Lima, B.S. and Ebecken, N.F. (2009). Design of interpretable fuzzy rule-based classifiers using spectral analysis with structure and parameters optimization, Fuzzy Sets and Systems 160(7): 857–881.10.1016/j.fss.2008.08.010 Search in Google Scholar

Frank, A. and Asuncion, A. (2019). UCI machine learning repository, http://archive.ics.uci.edu/ml. Search in Google Scholar

Geng, Y., Li, Q., Zheng, R., Zhuang, F. and He, R. (2018). RECOME: A new density-based clustering algorithm using relative KNN kernel density, Information Sciences 436–437: 13–30.10.1016/j.ins.2018.01.013 Search in Google Scholar

Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science 30(2): 281–297, DOI: 10.34768/amcs-2020-0022. Search in Google Scholar

Haberman, S.J. (1976). Generalized residuals for log-linear models, Proceedings of the 9th International Biometrics Conference, Boston, USA, pp. 104–122. Search in Google Scholar

Harifi, S., Khalilian, M., Mohammadzadeh, J. and Ebrahimnejad, S. (2020). Optimizing a neuro-fuzzy system based on nature-inspired emperor penguins colony optimization algorithm, IEEE Transactions on Fuzzy Systems 28(6): 1110–1124.10.1109/TFUZZ.2020.2984201 Search in Google Scholar

Hathaway, R.J., Bezdek, J.C. and Hu, Y. (2000). Generalized fuzzy c-means clustering strategies using lp norm distances, IEEE Transactions on Fuzzy Systems 8(5): 576–582.10.1109/91.873580 Search in Google Scholar

Hekimoglu, S., Erdogan, B. and Erenoglu, R. (2015). A new outlier detection method considering outliers as model errors, Experimental Techniques 39(1): 57–68.10.1111/j.1747-1567.2012.00876.x Search in Google Scholar

Hekimoglu, S. and Koch, K.R. (2000). How can reliability of the test for outliers be measured?, Allgemeine Vermessungsnachrichten 7: 247–253. Search in Google Scholar

Jakubek, S. and Keuth, N. (2006). A local neuro-fuzzy network for high-dimensional models and optimalization, Engineering Applications of Artificial Intelligence 19(6): 705–717.10.1016/j.engappai.2005.12.014 Search in Google Scholar

Jang, J.-S.R. (1993). ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics 23(3): 665–684.10.1109/21.256541 Search in Google Scholar

Jiang, Y. and Yin, S. (2019). Recent advances in key-performance-indicator oriented prognosis and diagnosis with a Matlab toolbox: DB-KIT, IEEE Transactions on Industrial Informatics 15(5): 2849–2858.10.1109/TII.2018.2875067 Search in Google Scholar

Jiang, Y., Yin, S. and Kaynak, O. (2018). Data-driven monitoring and safety control of industrial cyber-physical systems: Basics and beyond, IEEE Access 6: 47374–47384.10.1109/ACCESS.2018.2866403 Search in Google Scholar

Johnson, B., Tateishi, R. and Hoan, N. (2013). A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees, International Journal of Remote Sensing 34(20): 6969–6982.10.1080/01431161.2013.810825 Search in Google Scholar

Kaya, H., Tüfekci, P. and Gürgen, S.F. (2012). Local and global learning methods for predicting power of a combined gas and steam turbine, Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering (ICETCEE 2012), Dubai, UAE, pp. 13–18. Search in Google Scholar

Keith, M.J., Jameson, A., van Straten, W., Bailes, M., Johnston, S., Kramer, M., Possenti, A., Bates, S.D., Bhat, N.D.R., Burgay, M., Burke-Spolaor, S., D’Amico, N., Levin, L., McMahon, P.L., Milia, S. and Stappers, B.W. (2010). The high time resolution universe pulsar survey. I: System configuration and initial discoveries, Monthly Notices of the Royal Astronomical Society 409(2): 619–627. Search in Google Scholar

Kłopotek, R., Kłopotek, M. and Wierzchoń, S. (2020). A feasible k-means kernel trick under non–Euclidean feature space, International Journal of Applied Mathematics and Computer Science 30(4): 703–715, DOI: 10.34768/amcs-2020-0052. Search in Google Scholar

Krishnapuram, R. and Keller, J. (1993). A possibilistic approach to clustering, IEEE Transactions on Fuzzy Systems 1(2): 98–110.10.1109/91.227387 Search in Google Scholar

Latecki, L.J., Lazarevic, A. and Pokrajac, D. (2007). Outlier detection with kernel density functions, in P. Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition, Springer, Berlin/Heidelberg, pp. 61–75.10.1007/978-3-540-73499-4_6 Search in Google Scholar

Lehmann, R. (2013). 3σ-Rule for outlier detection from the viewpoint of geodetic adjustment, Journal of Surveying Engineering 139(4): 157–165.10.1061/(ASCE)SU.1943-5428.0000112 Search in Google Scholar

Leski, J. and Kotas, M. (2015). On robust fuzzy c-regression models, Fuzzy Sets and Systems 279: 112–129.10.1016/j.fss.2014.12.004 Search in Google Scholar

Leski, J.M. (2014). Fuzzy c-ordered-means clustering, Fuzzy Sets and Systems 286: 114–133.10.1016/j.fss.2014.12.007 Search in Google Scholar

Leski, J.M. (2015). Fuzzy (c + p)-means clustering and its application to a fuzzy rule-based classifier: Towards good generalization and good interpretability, IEEE Transactions on Fuzzy Systems 23(4): 802–812.10.1109/TFUZZ.2014.2327995 Search in Google Scholar

Leski, J.M. and Kotas, M.P. (2018). Linguistically defined clustering of data, International Journal of Applied Mathematics and Computer Science 28(3): 545–557, DOI: 10.2478/amcs-2018-0042.10.2478/amcs-2018-0042 Search in Google Scholar

Leys, C., Ley, C., Klein, O., Bernard, P. and Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median, Journal of Experimental Social Psychology 49(4): 764–766.10.1016/j.jesp.2013.03.013 Search in Google Scholar

Liang, X., Zou, T., Guo, B., Li, S., Zhang, H., Zhang, S., Huang, H. and Chen, S.X. (2015). Assessing Beijing’s PM2.5 pollution: Severity, weather impact, apec and winter heating, Proceedings of the Royal Society A 471(2182): 257–276. Search in Google Scholar

Lyon, R.J., Stappers, B.W., Cooper, S., Brooke, J.M. and Knowles, J.D. (2016). Fifty years of pulsar candidate selection: From simple filters to a new principled real-time classification approach, Monthly Notices of the Royal Astronomical Society 459(1): 1104–1123.10.1093/mnras/stw656 Search in Google Scholar

Mamdani, E.H. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies 7(1): 1–13.10.1016/S0020-7373(75)80002-2 Search in Google Scholar

Matthews, S.G., Gongora, M.A. and Hopgood, A.A. (2013). Evolutionary algorithms and fuzzy sets for discovering temporal rules, International Journal of Applied Mathematics and Computer Science 23(4): 855–868, DOI: 10.2478/amcs-2013-0064.10.2478/amcs-2013-0064 Search in Google Scholar

Nowicki, R. (2006). Rough-neuro-fuzzy system with MICOG defuzzification, 2006 IEEE International Conference on Fuzzy Systems, Vancouver, Canada, pp. 1958–1965. Search in Google Scholar

Olson, C.C., Judd, K.P. and Nichols, J.M. (2018). Manifold learning techniques for unsupervised anomaly detection, Expert Systems with Applications 91: 374–385.10.1016/j.eswa.2017.08.005 Search in Google Scholar

Otte, C. (Ed.) (2013). Safe and interpretable machine learning: A methodological review, in C. Moewes and A. Nürnberger (Eds), Computational Intelligence in Intelligent Data Analysis, Springer, Berlin/Heidelberg, pp. 111–122.10.1007/978-3-642-32378-2_8 Search in Google Scholar

Piegat, A. and Dobryakova, L. (2020). A decomposition approach to type 2 interval arithmetic, International Journal of Applied Mathematics and Computer Science 30(1): 185–201, DOI: 10.34768/amcs-2020-0015. Search in Google Scholar

Reichenbach, H. (1935). Wahrscheinlichkeitslogik, Erkenntnis 5: 37–43.10.1007/BF00172280 Search in Google Scholar

Riid, A. (2002). Transparent Fuzzy Systems: Modelling and Control, PhD dissertation, Tallinn Technical University, Tallinn. Search in Google Scholar

Rocha Neto, A.R. and Barreto, G.A. (2009). On the application of ensembles of classifiers to the diagnosis of pathologies of the vertebral column: A comparative analysis, IEEE Latin America Transactions 7(4): 487–496.10.1109/TLA.2009.5349049 Search in Google Scholar

Seresht, N.G. and Fayek, A.R. (2020). Neuro-fuzzy system dynamics technique for modeling construction systems, Applied Soft Computing 93: 106400.10.1016/j.asoc.2020.106400 Search in Google Scholar

Sholla, S., Mir, R.N. and Chishti, M.A. (2020). A neuro fuzzy system for incorporating ethics in the Internet of things, Journal of Ambient Intelligence and Humanized Computing 12: 1487–1501.10.1007/s12652-020-02217-2 Search in Google Scholar

Sikora, M. and Krzykawski, D. (2005). Application of data exploration methods in analysis of carbon dioxide emission in hard-coal mines, dewater pump stations, Mechanizacja i Automatyzacja Górnictwa 413(6): 57–67. Search in Google Scholar

Siminski, K. (2008). Neuro-fuzzy system with hierarchical domain partition, Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation (CIMCA 2008), Vienna, Austria, pp. 392–397. Search in Google Scholar

Siminski, K. (2009). Patchwork neuro-fuzzy system with hierarchical domain partition, in M. Kurzyński and M. Woźniak (Eds), Computer Recognition Systems 3, Advances in Intelligent and Soft Computing, Vol. 57, Springer-Verlag, Berlin/Heidelberg, pp. 11–18.10.1007/978-3-540-93905-4_2 Search in Google Scholar

Simiński, K. (2010). Rule weights in a neuro-fuzzy system with a hierarchical domain partition, International Journal of Applied Mathematics and Computer Science 20(2): 337–347, DOI: 10.2478/v10006-010-0025-3.10.2478/v10006-010-0025-3 Search in Google Scholar

Simiński, K. (2012). Neuro-rough-fuzzy approach for regression modelling from missing data, International Journal of Applied Mathematics and Computer Science 22(2): 461–476, DOI: 10.2478/v10006-012-0035-4.10.2478/v10006-012-0035-4 Search in Google Scholar

Siminski, K. (2014). Neuro-fuzzy system based kernel for classification with support vector machines, in A. Gruca et al. (Eds), Man–Machine Interactions 3, Springer International Publishing, Cham, pp. 415–422.10.1007/978-3-319-02309-0_45 Search in Google Scholar

Siminski, K. (2015). Rough subspace neuro-fuzzy system, Fuzzy Sets and Systems 269: 30–46. Siminski, K. (2016). Memetic neuro-fuzzy system with Big-Bang-Big-Crunch optimisation, in A. Gruca et al. (Eds), Man–Machine Interactions 4, Springer International Publishing, Cham, pp. 583–592.10.1007/978-3-319-23437-3_50 Search in Google Scholar

Siminski, K. (2017a). Fuzzy weighted c-ordered means clustering algorithm, Fuzzy Sets and Systems 318: 1–33.10.1016/j.fss.2017.01.001 Search in Google Scholar

Siminski, K. (2017b). Interval type-2 neuro-fuzzy system with implication-based inference mechanism, Expert Systems with Applications 79C: 140–152.10.1016/j.eswa.2017.02.046 Search in Google Scholar

Siminski, K. (2017c). Robust subspace neuro-fuzzy system with data ordering, Neurocomputing 238: 33–43.10.1016/j.neucom.2017.01.034 Search in Google Scholar

Siminski, K. (2019). NFL—Free library for fuzzy and neuro-fuzzy systems, in S. Kozielski et al. (Eds), Beyond Databases, Architectures and Structures: Paving the Road to Smart Data Processing and Analysis, Springer International Publishing, Cham, pp. 139–150.10.1007/978-3-030-19093-4_11 Search in Google Scholar

Siminski, K. (2020). FIT2COMIn—Robust clustering algorithm for incomplete data, in A. Gruca et al. (Eds), Man–Machine Interactions 6, Springer International Publishing, Cham, pp. 99–110.10.1007/978-3-030-31964-9_10 Search in Google Scholar

Škrjanc, I., Iglesias, J.A., Sanchis, A., Leite, D., Lughofer, E. and Gomide, F. (2019). Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A survey, Information Sciences 490: 344–368.10.1016/j.ins.2019.03.060 Search in Google Scholar

Słowik, A., Cpałka, K. and Łapa, K. (2020). Multipopulation nature-inspired algorithm (MNIA) for the designing of interpretable fuzzy systems, IEEE Transactions on Fuzzy Systems 28(6): 1125–1139.10.1109/TFUZZ.2019.2959997 Search in Google Scholar

Sugeno, M. and Kang, G.T. (1988). Structure identification of fuzzy model, Fuzzy Sets and Systems 28(1): 15–33.10.1016/0165-0114(88)90113-3 Search in Google Scholar

Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116–132.10.1109/TSMC.1985.6313399 Search in Google Scholar

Tang, B. and He, H. (2017). A local density-based approach for outlier detection, Neurocomputing 241: 171–180.10.1016/j.neucom.2017.02.039 Search in Google Scholar

Timm, H., Borgelt, C., Döring, C. and Kruse, R. (2004). An extension to possibilistic fuzzy cluster analysis, Fuzzy Sets and Systems 147: 3–16.10.1016/j.fss.2003.11.009 Search in Google Scholar

Tüfekci, P. (2014). Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods, International Journal of Electrical Power & Energy Systems 60: 126–140.10.1016/j.ijepes.2014.02.027 Search in Google Scholar

Yager, R.R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE Transactions on Systems, Man, and Cybernetics 18(1): 183–190.10.1109/21.87068 Search in Google Scholar

Yang, P., Zhu, Q. and Zhong, X. (2009). Subtractive clustering based RBF neural network model for outlier detection, Journal of Computers 4(8): 755–762.10.4304/jcp.4.8.755-762 Search in Google Scholar

Yeh, I.-C., Yang, K.-J. and Ting, T.-M. (2009). Knowledge discovery on RFM model using Bernoulli sequence, Expert Systems with Applications 36(3): 5866–5871.10.1016/j.eswa.2008.07.018 Search in Google Scholar

Youden, W.J. (1950). Index for rating diagnostic tests, Cancer 3(1): 32–35.10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 Search in Google Scholar

Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man, and Cybernetics SMC-3(1): 28–44.10.1109/TSMC.1973.5408575 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo