Otwarty dostęp

Intelligent Models for Prediction of Compressive Strength of Geopolymer Pervious Concrete Hybridized with Agro-Industrial and Construction-Demolition Wastes

 oraz   
26 wrz 2024

Zacytuj
Pobierz okładkę

Z. He, X. Zhu, J. Wang, M. Mu, Y. Wang, Comparison of CO 2 emissions from OPC and recycled cement production, Constr. Build. Mater. 211 (2019) 965–973. https://doi.org/10.1016/j.conbuildmat.2019.03.289. HeZ. ZhuX. WangJ. MuM. WangY. Comparison of CO 2 emissions from OPC and recycled cement production Constr. Build. Mater. 211 2019 965 973 https://doi.org/10.1016/j.conbuildmat.2019.03.289. Search in Google Scholar

F. Xu, X. Li, Q. Xiong, Y. Li, J. Zhu, F. Yang, T. Sun, C. Peng, J. Lin, Influence of aggregate reinforcement treatment on the performance of geopolymer recycled aggregate permeable concrete: From experimental studies to PFC 3D simulations, Constr. Build. Mater. 354 (2022) 1–16. https://doi.org/10.1016/j.conbuildmat.2022.129222. XuF. LiX. XiongQ. LiY. ZhuJ. YangF. SunT. PengC. LinJ. Influence of aggregate reinforcement treatment on the performance of geopolymer recycled aggregate permeable concrete: From experimental studies to PFC 3D simulations Constr. Build. Mater. 354 2022 1 16 https://doi.org/10.1016/j.conbuildmat.2022.129222. Search in Google Scholar

S. Marathe, I.R. Mithanthaya, R.Y. Shenoy, Durability and microstructure studies on Slag-Fly Ash-Glass powder based alkali activated pavement quality concrete mixes, Constr. Build. Mater. 287 (2021) 1–19. https://doi.org/10.1016/j.conbuildmat.2021.123047. MaratheS. MithanthayaI.R. ShenoyR.Y. Durability and microstructure studies on Slag-Fly Ash-Glass powder based alkali activated pavement quality concrete mixes Constr. Build. Mater. 287 2021 1 19 https://doi.org/10.1016/j.conbuildmat.2021.123047. Search in Google Scholar

A.H. Shalan, M. Asce, M.M. El-gohary, M. Asce, Influence of Sulfuric Acid Exposure on Mechanical Properties of Alkali-Activated Concrete, Pract. Period. Struct. Des. Constr. 29 (2024) 1–14. https://doi.org/10.1061/PPSCFX.SCENG-1478. ShalanA.H. AsceM. El-goharyM.M. AsceM. Influence of Sulfuric Acid Exposure on Mechanical Properties of Alkali-Activated Concrete Pract. Period. Struct. Des. Constr. 29 2024 1 14 https://doi.org/10.1061/PPSCFX.SCENG-1478. Search in Google Scholar

T.V. Nagaraju, A. Bahrami, M. Azab, S. Naskar, Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass—A strength performance and sustainability analysis, Front. Mater. 10 (2023) 1–17. https://doi.org/10.3389/fmats.2023.1128095. NagarajuT.V. BahramiA. AzabM. NaskarS. Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass—A strength performance and sustainability analysis Front. Mater. 10 2023 1 17 https://doi.org/10.3389/fmats.2023.1128095. Search in Google Scholar

S. Mustafa, M.A. Hameed, A. Dulaimi, Eco-Friendly Geopolymer Concrete: A Critical Review, AIP Conf. Proc. 2806 (2023) 1–14. https://doi.org/10.1063/5.0163551. MustafaS. HameedM.A. DulaimiA. Eco-Friendly Geopolymer Concrete: A Critical Review AIP Conf. Proc. 2806 2023 1 14 https://doi.org/10.1063/5.0163551. Search in Google Scholar

A. Siva Krishna, V. Ranga Rao, Strength prediction of geopolymer concrete using ANN, Int. J. Recent Technol. Eng. 7 (2019) 661–667. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067899369&partnerID=40&md5=fcb80c688871b76b4410a593684ad25e. Siva KrishnaA. Ranga RaoV. Strength prediction of geopolymer concrete using ANN Int. J. Recent Technol. Eng. 7 2019 661 667 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067899369&partnerID=40&md5=fcb80c688871b76b4410a593684ad25e. Search in Google Scholar

A.A. Shahmansouri, H. Akbarzadeh Bengar, S. Ghanbari, Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method, J. Build. Eng. 31 (2020) 1–11. https://doi.org/10.1016/j.jobe.2020.101326. ShahmansouriA.A. Akbarzadeh BengarH. GhanbariS. Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method J. Build. Eng. 31 2020 1 11 https://doi.org/10.1016/j.jobe.2020.101326. Search in Google Scholar

I. Mansouri, M. Ostovari, P.O. Awoyera, J.W. Hu, Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach, Comput. Concr. 24 (2021) 319–332. https://doi.org/10.12989/cac.2021.27.4.319. MansouriI. OstovariM. AwoyeraP.O. HuJ.W. Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach Comput. Concr. 24 2021 319 332 https://doi.org/10.12989/cac.2021.27.4.319. Search in Google Scholar

M.A. Khan, S.A. Memon, F. Farooq, M.F. Javed, F. Aslam, R. Alyousef, Compressive Strength of Fly-Ash-Based Geopolymer Concrete by Gene Expression Programming and Random Forest, Adv. Civ. Eng. 2021 (2021). https://doi.org/10.1155/2021/6618407. KhanM.A. MemonS.A. FarooqF. JavedM.F. AslamF. AlyousefR. Compressive Strength of Fly-Ash-Based Geopolymer Concrete by Gene Expression Programming and Random Forest Adv. Civ. Eng. 2021 2021 https://doi.org/10.1155/2021/6618407. Search in Google Scholar

R. Biswas, A. Bardhan, P. Samui, B. Rai, S. Nayak, D.J. Armaghani, Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete, Comput. Concr. 28 (2021) 221–232. https://doi.org/10.12989/cac.2021.28.2.221. BiswasR. BardhanA. SamuiP. RaiB. NayakS. ArmaghaniD.J. Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete Comput. Concr. 28 2021 221 232 https://doi.org/10.12989/cac.2021.28.2.221. Search in Google Scholar

M.A. Khan, A. Zafar, A. Akbar, M.F. Javed, A. Mosavi, Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concrete, Materials (Basel). 14 (2021) 1–23. https://doi.org/10.3390/ma14051106. KhanM.A. ZafarA. AkbarA. JavedM.F. MosaviA. Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concrete Materials (Basel). 14 2021 1 23 https://doi.org/10.3390/ma14051106. Search in Google Scholar

K.K. Yaswanth, J. Revathy, P. Gajalakshmi, Soft Computing Techniques for the Prediction and Analysis of Compressive Strength of Alkali-Activated Alumino-Silicate Based Strain-Hardening Geopolymer Composites, Silicon. 14 (2022) 1985–2008. https://doi.org/10.1007/s12633-021-00988-7. YaswanthK.K. RevathyJ. GajalakshmiP. Strength of Alkali-Activated Alumino-Silicate Based Strain-Hardening Geopolymer Composites Silicon. 14 2022 1985 2008 https://doi.org/10.1007/s12633-021-00988-7. Search in Google Scholar

Q. Wang, W. Ahmad, A. Ahmad, F. Aslam, A. Mohamed, N.I. Vatin, Application of Soft Computing Techniques to Predict the Strength of Geopolymer Composites, Polymers (Basel). 14 (2022). https://doi.org/10.3390/polym14061074. WangQ. AhmadW. AhmadA. AslamF. MohamedA. VatinN.I. Application of Soft Computing Techniques to Predict the Strength of Geopolymer Composites Polymers (Basel). 14 2022 https://doi.org/10.3390/polym14061074. Search in Google Scholar

H.U. Ahmed, A.A. Mohammed, A. Mohammed, Soft computing models to predict the compressive strength of GGBS/FAgeopolymer concrete, PLoS One. 17 (2022) 1–28. https://doi.org/10.1371/journal.pone.0265846. AhmedH.U. MohammedA.A. MohammedA. Soft computing models to predict the compressive strength of GGBS/FAgeopolymer concrete PLoS One. 17 2022 1 28 https://doi.org/10.1371/journal.pone.0265846. Search in Google Scholar

A. Jain, S. Marathe, S. Akhila, Soft computing modeling on air-cured slag-fly ash-glass powder-based alkali activated masonry elements developed using different industrial waste aggregates, Asian J. Civ. Eng. 24 (2023) 1515–1527. https://doi.org/10.1007/s42107-023-00584-7. JainA. MaratheS. AkhilaS. Soft computing modeling on air-cured slag-fly ash-glass powder-based alkali activated masonry elements developed using different industrial waste aggregates Asian J. Civ. Eng. 24 2023 1515 1527 https://doi.org/10.1007/s42107-023-00584-7. Search in Google Scholar

M.A.S. Hossain, M.N. Uddin, M.M. Hossain, Prediction of compressive strength fiber-reinforced geopolymer concrete (FRGC) using gene expression programming (GEP), Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.02.458. HossainM.A.S. UddinM.N. HossainM.M. Prediction of compressive strength fiber-reinforced geopolymer concrete (FRGC) using gene expression programming (GEP) Mater. Today Proc. 2023 https://doi.org/10.1016/j.matpr.2023.02.458. Search in Google Scholar

W. Dong, Y. Huang, A. Cui, G. Ma, Mix design optimization for fly ash-based geopolymer with mechanical, environmental, and economic objectives using soft computing technology, J. Build. Eng. 72 (2023) 1–15. https://doi.org/10.1016/j.jobe.2023.106577. DongW. HuangY. CuiA. MaG. Mix design optimization for fly ash-based geopolymer with mechanical, environmental, and economic objectives using soft computing technology J. Build. Eng. 72 2023 1 15 https://doi.org/10.1016/j.jobe.2023.106577. Search in Google Scholar

S. Shamim Ansari, S. Muhammad Ibrahim, S. Danish Hasan, Conventional and Ensemble Machine Learning Models to Predict the Compressive Strength of Fly Ash Based Geopolymer Concrete, Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.04.393. Shamim AnsariS. Muhammad IbrahimS. Danish HasanS. Conventional and Ensemble Machine Learning Models to Predict the Compressive Strength of Fly Ash Based Geopolymer Concrete Mater. Today Proc. 2023 https://doi.org/10.1016/j.matpr.2023.04.393. Search in Google Scholar

H.U. Ahmed, R.R. Mostafa, A. Mohammed, P. Sihag, A. Qadir, Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concrete, Neural Comput. Appl. 35 (2023) 2909–2926. https://doi.org/10.1007/s00521-022-07724-1. AhmedH.U. MostafaR.R. MohammedA. SihagP. QadirA. Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concrete Neural Comput. Appl. 35 2023 2909 2926 https://doi.org/10.1007/s00521-022-07724-1. Search in Google Scholar

X. Shi, S. Chen, Q. Wang, Y. Lu, S. Ren, J. Huang, Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete, Gels. 10 (2024). https://doi.org/10.3390/gels10020148. ShiX. ChenS. WangQ. LuY. RenS. HuangJ. Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete Gels. 10 2024 https://doi.org/10.3390/gels10020148. Search in Google Scholar

Y. Li, G. Wang, M.N. Amin, B. Iftikhar, Y. Dodo, F. Althoey, A.F. Deifalla, Fresh state and strength performance evaluation of slag-based alkali-activated concrete using soft-computing methods, Mater. Today Commun. 38 (2024) 1–14. https://doi.org/10.1016/j.mtcomm.2023.107822. LiY. WangG. AminM.N. IftikharB. DodoY. AlthoeyF. DeifallaA.F. Fresh state and strength performance evaluation of slag-based alkali-activated concrete using soft-computing methods Mater. Today Commun. 38 2024 1 14 https://doi.org/10.1016/j.mtcomm.2023.107822. Search in Google Scholar

IS-2386:Part-I, Indian Standard Method of Test for aggregate for concrete; Part I - Particle size and shape, (1963) 1–26. IS-2386:Part-I, Indian Standard Method of Test for aggregate for concrete; Part I - Particle size and shape 1963 1 26 Search in Google Scholar

IS:2386(Part III), Method of Test for aggregate for concrete, (1963) 1–17. IS:2386(Part III), Method of Test for aggregate for concrete 1963 1 17 Search in Google Scholar

IS 2386(Part IV), Methods of Test for Aggregates for Concrete - Mechanical Properties, (1963) 1–28. IS 2386(Part IV), Methods of Test for Aggregates for Concrete - Mechanical Properties 1963 1 28 Search in Google Scholar

IS:383, Coarse and Fine Aggregate for Concrete — Specification, (2016) 1–21. IS:383, Coarse and Fine Aggregate for Concrete — Specification 2016 1 21 Search in Google Scholar

IRC:44, Guidelines for Cement Concrete Mix Design for Pavements, (2017) 1–60. IRC:44, Guidelines for Cement Concrete Mix Design for Pavements 2017 1 60 Search in Google Scholar

S. Marathe, I.R. Mithanthaya, B.M. Mithun, S. Shetty, A. P. K, Performance of slag-fly ash based alkali activated concrete for paver applications utilizing powdered waste glass as a binding ingredient, Int. J. Pavement Res. Technol. (2020). https://doi.org/10.1007/s42947-020-0173-2. MaratheS. MithanthayaI.R. MithunB.M. ShettyS. A. P. K, Performance of slag-fly ash based alkali activated concrete for paver applications utilizing powdered waste glass as a binding ingredient Int. J. Pavement Res. Technol. 2020 https://doi.org/10.1007/s42947-020-0173-2. Search in Google Scholar

IS 516 (Part 1-Sec 1), Hardened concrete-Methods of test: Part 1 Testing of Strength of Hardened Concrete, Section 1 Compressive, Flexural and Split Tensile Strength, (2021) 1–9. www.standardsbis.in. IS 516 (Part 1-Sec 1), Hardened concrete-Methods of test: Part 1 Testing of Strength of Hardened Concrete, Section 1 Compressive, Flexural and Split Tensile Strength 2021 1 9 www.standardsbis.in. Search in Google Scholar

J.T. Kevern, D. Biddle, Q. Cao, Effects of Macrosynthetic Fibers on Pervious Concrete Properties, J. Mater. Civ. Eng. 27 (2015) 06014031. https://doi.org/10.1061/(asce)mt.1943-5533.0001213. KevernJ.T. BiddleD. CaoQ. Effects of Macrosynthetic Fibers on Pervious Concrete Properties J. Mater. Civ. Eng. 27 2015 06014031 https://doi.org/10.1061/(asce)mt.1943-5533.0001213. Search in Google Scholar

F. Montes, L. Haselbach, Measuring hydraulic conductivity in pervious concrete, Environ. Eng. Sci. 23 (2006) 960–969. https://doi.org/10.1089/ees.2006.23.960. MontesF. HaselbachL. Measuring hydraulic conductivity in pervious concrete Environ. Eng. Sci. 23 2006 960 969 https://doi.org/10.1089/ees.2006.23.960. Search in Google Scholar

M.V. Kamath, S. Prashanth, M. Kumar, A. Tantri, Machine-Learning-Algorithm to predict the High-Performance concrete compressive strength using multiple data, J. Eng. Des. Technol. 22 (2024) 532–560. https://doi.org/10.1108/JEDT-11-2021-0637. KamathM.V. PrashanthS. KumarM. TantriA. Machine-Learning-Algorithm to predict the High-Performance concrete compressive strength using multiple data J. Eng. Des. Technol. 22 2024 532 560 https://doi.org/10.1108/JEDT-11-2021-0637. Search in Google Scholar

A. Anjum, M. Hrairi, A. Aabid, N. Yatim, M. Ali, Damage detection in concrete structures with impedance data and machine learning, Bull. Polish Acad. Sci. Tech. Sci. 72 (2024) 1–11. https://doi.org/10.24425/bpasts.2024.149178. AnjumA. HrairiM. AabidA. YatimN. AliM. Damage detection in concrete structures with impedance data and machine learning Bull. Polish Acad. Sci. Tech. Sci. 72 2024 1 11 https://doi.org/10.24425/bpasts.2024.149178. Search in Google Scholar

M.I. Khan, Y.M. Abbas, Robust extreme gradient boosting regression model for compressive strength prediction of blast furnace slag and fly ash concrete, Mater. Today Commun. 35 (2023) 105793. https://doi.org/10.1016/j.mtcomm.2023.105793. KhanM.I. AbbasY.M. Robust extreme gradient boosting regression model for compressive strength prediction of blast furnace slag and fly ash concrete Mater. Today Commun. 35 2023 105793 https://doi.org/10.1016/j.mtcomm.2023.105793. Search in Google Scholar

S. Paudel, A. Pudasaini, R.K. Shrestha, E. Kharel, Compressive strength of concrete material using machine learning techniques, Clean. Eng. Technol. 15 (2023) 1–17. https://doi.org/10.1016/j.clet.2023.100661. PaudelS. PudasainiA. ShresthaR.K. KharelE. Compressive strength of concrete material using machine learning techniques Clean. Eng. Technol. 15 2023 1 17 https://doi.org/10.1016/j.clet.2023.100661. Search in Google Scholar

G.T. Truong, K.K. Choi, T.H. Nguyen, C.S. Kim, Prediction of shear strength of RC deep beams using XGBoost regression with Bayesian optimization, Eur. J. Environ. Civ. Eng. 27 (2023) 4046–4066. https://doi.org/10.1080/19648189.2023.2169357. TruongG.T. ChoiK.K. NguyenT.H. KimC.S. Prediction of shear strength of RC deep beams using XGBoost regression with Bayesian optimization Eur. J. Environ. Civ. Eng. 27 2023 4046 4066 https://doi.org/10.1080/19648189.2023.2169357. Search in Google Scholar

L.R. Kalabarige, J. Sridhar, S. Subbaram, P. Prasath, R. Gobinath, Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts, Adv. Civ. Eng. (2024) 1–11. https://doi.org/10.1155/2024/7844854. KalabarigeL.R. SridharJ. SubbaramS. PrasathP. GobinathR. Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts Adv. Civ. Eng. 2024 1 11 https://doi.org/10.1155/2024/7844854. Search in Google Scholar

S.S. Pakzad, N. Roshan, M. Ghalehnovi, Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concrete, Sci. Rep. 13 (2023) 1–15. https://doi.org/10.1038/s41598-023-30606-y. PakzadS.S. RoshanN. GhalehnoviM. Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concrete Sci. Rep. 13 2023 1 15 https://doi.org/10.1038/s41598-023-30606-y. Search in Google Scholar

S. Marathe, T.S. Shetty, B.M. Mithun, A. Ranjith, Strength and durability studies on air cured alkali activated pavement quality concrete mixes incorporating recycled aggregates, Case Stud. Constr. Mater. 15 (2021) 1–13. https://doi.org/10.1016/j.cscm.2021.e00732. MaratheS. ShettyT.S. MithunB.M. RanjithA. Strength and durability studies on air cured alkali activated pavement quality concrete mixes incorporating recycled aggregates Case Stud. Constr. Mater. 15 2021 1 13 https://doi.org/10.1016/j.cscm.2021.e00732. Search in Google Scholar

E.L.C. Filho, G.C. Dos Santos Ferreira, D.C. Nogarotto, S.A. Pozza, Pervious concrete with waste foundry sand: Mechanical and hydraulic properties, Rev. Mater. 27 (2022) e13154. https://doi.org/10.1590/S1517-707620220001.1354. FilhoE.L.C. Dos Santos FerreiraG.C. NogarottoD.C. PozzaS.A. Pervious concrete with waste foundry sand: Mechanical and hydraulic properties Rev. Mater. 27 2022 e13154 https://doi.org/10.1590/S1517-707620220001.1354. Search in Google Scholar

K.S. Elango, D. Vivek, G.K. Prakash, M.J. Paranidharan, S. Pradeep, M. Prabhukesavaraj, Strength and permeability studies on PPC binder pervious concrete using palm jaggery as an admixture, Mater. Today Proc. 37 (2020) 2329–2333. https://doi.org/10.1016/j.matpr.2020.08.006. ElangoK.S. VivekD. PrakashG.K. ParanidharanM.J. PradeepS. PrabhukesavarajM. Strength and permeability studies on PPC binder pervious concrete using palm jaggery as an admixture Mater. Today Proc. 37 2020 2329 2333 https://doi.org/10.1016/j.matpr.2020.08.006. Search in Google Scholar

Y. Zhang, H. Li, A. Abdelhady, J. Yang, Comparative laboratory measurement of pervious concrete permeability using constant-head and falling-head permeameter methods, Constr. Build. Mater. 263 (2020) 1–11. https://doi.org/10.1016/j.conbuildmat.2020.120614. ZhangY. LiH. AbdelhadyA. YangJ. Comparative laboratory measurement of pervious concrete permeability using constant-head and falling-head permeameter methods Constr. Build. Mater. 263 2020 1 11 https://doi.org/10.1016/j.conbuildmat.2020.120614. Search in Google Scholar

IS:456, Plain and Reinforced Concrete-Code of Practice, (2000) 1–100. IS:456, Plain and Reinforced Concrete-Code of Practice 2000 1 100 Search in Google Scholar

P.G. Asteris, A.D. Skentou, A. Bardhan, P. Samui, K. Pilakoutas, Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models, Cem. Concr. Res. 145 (2021) 1–23. https://doi.org/10.1016/j.cemconres.2021.106449. AsterisP.G. SkentouA.D. BardhanA. SamuiP. PilakoutasK. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models Cem. Concr. Res. 145 2021 1 23 https://doi.org/10.1016/j.cemconres.2021.106449. Search in Google Scholar

Ł. Sadowski, M. Piechówka-Mielnik, T. Widziszowski, A. Gardynik, S. Mackiewicz, Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust, J. Clean. Prod. 212 (2019) 727–740. https://doi.org/10.1016/j.jclepro.2018.12.059. SadowskiŁ. Piechówka-MielnikM. WidziszowskiT. GardynikA. MackiewiczS. Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust J. Clean. Prod. 212 2019 727 740 https://doi.org/10.1016/j.jclepro.2018.12.059. Search in Google Scholar