Intelligent Models for Prediction of Compressive Strength of Geopolymer Pervious Concrete Hybridized with Agro-Industrial and Construction-Demolition Wastes
Department of Materials Engineering and Construction Processes, Faculty of Civil Engineering, Wrocław University of Science and TechnologyWrocław, Poland
This work is licensed under the Creative Commons Attribution 4.0 International License.
Z. He, X. Zhu, J. Wang, M. Mu, Y. Wang, Comparison of CO 2 emissions from OPC and recycled cement production, Constr. Build. Mater. 211 (2019) 965–973. https://doi.org/10.1016/j.conbuildmat.2019.03.289.HeZ.ZhuX.WangJ.MuM.WangY.Comparison of CO 2 emissions from OPC and recycled cement productionConstr. Build. Mater.2112019965973https://doi.org/10.1016/j.conbuildmat.2019.03.289.Search in Google Scholar
F. Xu, X. Li, Q. Xiong, Y. Li, J. Zhu, F. Yang, T. Sun, C. Peng, J. Lin, Influence of aggregate reinforcement treatment on the performance of geopolymer recycled aggregate permeable concrete: From experimental studies to PFC 3D simulations, Constr. Build. Mater. 354 (2022) 1–16. https://doi.org/10.1016/j.conbuildmat.2022.129222.XuF.LiX.XiongQ.LiY.ZhuJ.YangF.SunT.PengC.LinJ.Influence of aggregate reinforcement treatment on the performance of geopolymer recycled aggregate permeable concrete: From experimental studies to PFC 3D simulationsConstr. Build. Mater.3542022116https://doi.org/10.1016/j.conbuildmat.2022.129222.Search in Google Scholar
S. Marathe, I.R. Mithanthaya, R.Y. Shenoy, Durability and microstructure studies on Slag-Fly Ash-Glass powder based alkali activated pavement quality concrete mixes, Constr. Build. Mater. 287 (2021) 1–19. https://doi.org/10.1016/j.conbuildmat.2021.123047.MaratheS.MithanthayaI.R.ShenoyR.Y.Durability and microstructure studies on Slag-Fly Ash-Glass powder based alkali activated pavement quality concrete mixesConstr. Build. Mater.2872021119https://doi.org/10.1016/j.conbuildmat.2021.123047.Search in Google Scholar
A.H. Shalan, M. Asce, M.M. El-gohary, M. Asce, Influence of Sulfuric Acid Exposure on Mechanical Properties of Alkali-Activated Concrete, Pract. Period. Struct. Des. Constr. 29 (2024) 1–14. https://doi.org/10.1061/PPSCFX.SCENG-1478.ShalanA.H.AsceM.El-goharyM.M.AsceM.Influence of Sulfuric Acid Exposure on Mechanical Properties of Alkali-Activated ConcretePract. Period. Struct. Des. Constr.292024114https://doi.org/10.1061/PPSCFX.SCENG-1478.Search in Google Scholar
T.V. Nagaraju, A. Bahrami, M. Azab, S. Naskar, Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass—A strength performance and sustainability analysis, Front. Mater. 10 (2023) 1–17. https://doi.org/10.3389/fmats.2023.1128095.NagarajuT.V.BahramiA.AzabM.NaskarS.Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass—A strength performance and sustainability analysisFront. Mater.102023117https://doi.org/10.3389/fmats.2023.1128095.Search in Google Scholar
S. Mustafa, M.A. Hameed, A. Dulaimi, Eco-Friendly Geopolymer Concrete: A Critical Review, AIP Conf. Proc. 2806 (2023) 1–14. https://doi.org/10.1063/5.0163551.MustafaS.HameedM.A.DulaimiA.Eco-Friendly Geopolymer Concrete: A Critical ReviewAIP Conf. Proc.28062023114https://doi.org/10.1063/5.0163551.Search in Google Scholar
A. Siva Krishna, V. Ranga Rao, Strength prediction of geopolymer concrete using ANN, Int. J. Recent Technol. Eng. 7 (2019) 661–667. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067899369&partnerID=40&md5=fcb80c688871b76b4410a593684ad25e.Siva KrishnaA.Ranga RaoV.Strength prediction of geopolymer concrete using ANNInt. J. Recent Technol. Eng.72019661667https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067899369&partnerID=40&md5=fcb80c688871b76b4410a593684ad25e.Search in Google Scholar
A.A. Shahmansouri, H. Akbarzadeh Bengar, S. Ghanbari, Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method, J. Build. Eng. 31 (2020) 1–11. https://doi.org/10.1016/j.jobe.2020.101326.ShahmansouriA.A.Akbarzadeh BengarH.GhanbariS.Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP methodJ. Build. Eng.312020111https://doi.org/10.1016/j.jobe.2020.101326.Search in Google Scholar
I. Mansouri, M. Ostovari, P.O. Awoyera, J.W. Hu, Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach, Comput. Concr. 24 (2021) 319–332. https://doi.org/10.12989/cac.2021.27.4.319.MansouriI.OstovariM.AwoyeraP.O.HuJ.W.Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approachComput. Concr.242021319332https://doi.org/10.12989/cac.2021.27.4.319.Search in Google Scholar
M.A. Khan, S.A. Memon, F. Farooq, M.F. Javed, F. Aslam, R. Alyousef, Compressive Strength of Fly-Ash-Based Geopolymer Concrete by Gene Expression Programming and Random Forest, Adv. Civ. Eng. 2021 (2021). https://doi.org/10.1155/2021/6618407.KhanM.A.MemonS.A.FarooqF.JavedM.F.AslamF.AlyousefR.Compressive Strength of Fly-Ash-Based Geopolymer Concrete by Gene Expression Programming and Random ForestAdv. Civ. Eng.20212021https://doi.org/10.1155/2021/6618407.Search in Google Scholar
R. Biswas, A. Bardhan, P. Samui, B. Rai, S. Nayak, D.J. Armaghani, Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete, Comput. Concr. 28 (2021) 221–232. https://doi.org/10.12989/cac.2021.28.2.221.BiswasR.BardhanA.SamuiP.RaiB.NayakS.ArmaghaniD.J.Efficient soft computing techniques for the prediction of compressive strength of geopolymer concreteComput. Concr.282021221232https://doi.org/10.12989/cac.2021.28.2.221.Search in Google Scholar
M.A. Khan, A. Zafar, A. Akbar, M.F. Javed, A. Mosavi, Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concrete, Materials (Basel). 14 (2021) 1–23. https://doi.org/10.3390/ma14051106.KhanM.A.ZafarA.AkbarA.JavedM.F.MosaviA.Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concreteMaterials (Basel).142021123https://doi.org/10.3390/ma14051106.Search in Google Scholar
K.K. Yaswanth, J. Revathy, P. Gajalakshmi, Soft Computing Techniques for the Prediction and Analysis of Compressive Strength of Alkali-Activated Alumino-Silicate Based Strain-Hardening Geopolymer Composites, Silicon. 14 (2022) 1985–2008. https://doi.org/10.1007/s12633-021-00988-7.YaswanthK.K.RevathyJ.GajalakshmiP.Strength of Alkali-Activated Alumino-Silicate Based Strain-Hardening Geopolymer CompositesSilicon.14202219852008https://doi.org/10.1007/s12633-021-00988-7.Search in Google Scholar
Q. Wang, W. Ahmad, A. Ahmad, F. Aslam, A. Mohamed, N.I. Vatin, Application of Soft Computing Techniques to Predict the Strength of Geopolymer Composites, Polymers (Basel). 14 (2022). https://doi.org/10.3390/polym14061074.WangQ.AhmadW.AhmadA.AslamF.MohamedA.VatinN.I.Application of Soft Computing Techniques to Predict the Strength of Geopolymer CompositesPolymers (Basel).142022https://doi.org/10.3390/polym14061074.Search in Google Scholar
H.U. Ahmed, A.A. Mohammed, A. Mohammed, Soft computing models to predict the compressive strength of GGBS/FAgeopolymer concrete, PLoS One. 17 (2022) 1–28. https://doi.org/10.1371/journal.pone.0265846.AhmedH.U.MohammedA.A.MohammedA.Soft computing models to predict the compressive strength of GGBS/FAgeopolymer concretePLoS One.172022128https://doi.org/10.1371/journal.pone.0265846.Search in Google Scholar
A. Jain, S. Marathe, S. Akhila, Soft computing modeling on air-cured slag-fly ash-glass powder-based alkali activated masonry elements developed using different industrial waste aggregates, Asian J. Civ. Eng. 24 (2023) 1515–1527. https://doi.org/10.1007/s42107-023-00584-7.JainA.MaratheS.AkhilaS.Soft computing modeling on air-cured slag-fly ash-glass powder-based alkali activated masonry elements developed using different industrial waste aggregatesAsian J. Civ. Eng.24202315151527https://doi.org/10.1007/s42107-023-00584-7.Search in Google Scholar
M.A.S. Hossain, M.N. Uddin, M.M. Hossain, Prediction of compressive strength fiber-reinforced geopolymer concrete (FRGC) using gene expression programming (GEP), Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.02.458.HossainM.A.S.UddinM.N.HossainM.M.Prediction of compressive strength fiber-reinforced geopolymer concrete (FRGC) using gene expression programming (GEP)Mater. Today Proc.2023https://doi.org/10.1016/j.matpr.2023.02.458.Search in Google Scholar
W. Dong, Y. Huang, A. Cui, G. Ma, Mix design optimization for fly ash-based geopolymer with mechanical, environmental, and economic objectives using soft computing technology, J. Build. Eng. 72 (2023) 1–15. https://doi.org/10.1016/j.jobe.2023.106577.DongW.HuangY.CuiA.MaG.Mix design optimization for fly ash-based geopolymer with mechanical, environmental, and economic objectives using soft computing technologyJ. Build. Eng.722023115https://doi.org/10.1016/j.jobe.2023.106577.Search in Google Scholar
S. Shamim Ansari, S. Muhammad Ibrahim, S. Danish Hasan, Conventional and Ensemble Machine Learning Models to Predict the Compressive Strength of Fly Ash Based Geopolymer Concrete, Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.04.393.Shamim AnsariS.Muhammad IbrahimS.Danish HasanS.Conventional and Ensemble Machine Learning Models to Predict the Compressive Strength of Fly Ash Based Geopolymer ConcreteMater. Today Proc.2023https://doi.org/10.1016/j.matpr.2023.04.393.Search in Google Scholar
H.U. Ahmed, R.R. Mostafa, A. Mohammed, P. Sihag, A. Qadir, Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concrete, Neural Comput. Appl. 35 (2023) 2909–2926. https://doi.org/10.1007/s00521-022-07724-1.AhmedH.U.MostafaR.R.MohammedA.SihagP.QadirA.Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concreteNeural Comput. Appl.35202329092926https://doi.org/10.1007/s00521-022-07724-1.Search in Google Scholar
X. Shi, S. Chen, Q. Wang, Y. Lu, S. Ren, J. Huang, Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete, Gels. 10 (2024). https://doi.org/10.3390/gels10020148.ShiX.ChenS.WangQ.LuY.RenS.HuangJ.Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels ConcreteGels.102024https://doi.org/10.3390/gels10020148.Search in Google Scholar
Y. Li, G. Wang, M.N. Amin, B. Iftikhar, Y. Dodo, F. Althoey, A.F. Deifalla, Fresh state and strength performance evaluation of slag-based alkali-activated concrete using soft-computing methods, Mater. Today Commun. 38 (2024) 1–14. https://doi.org/10.1016/j.mtcomm.2023.107822.LiY.WangG.AminM.N.IftikharB.DodoY.AlthoeyF.DeifallaA.F.Fresh state and strength performance evaluation of slag-based alkali-activated concrete using soft-computing methodsMater. Today Commun.382024114https://doi.org/10.1016/j.mtcomm.2023.107822.Search in Google Scholar
IS-2386:Part-I, Indian Standard Method of Test for aggregate for concrete; Part I - Particle size and shape, (1963) 1–26.IS-2386:Part-I, Indian Standard Method of Test for aggregate for concrete; Part I - Particle size and shape1963126Search in Google Scholar
IS:2386(Part III), Method of Test for aggregate for concrete, (1963) 1–17.IS:2386(Part III), Method of Test for aggregate for concrete1963117Search in Google Scholar
IS 2386(Part IV), Methods of Test for Aggregates for Concrete - Mechanical Properties, (1963) 1–28.IS 2386(Part IV), Methods of Test for Aggregates for Concrete - Mechanical Properties1963128Search in Google Scholar
IS:383, Coarse and Fine Aggregate for Concrete — Specification, (2016) 1–21.IS:383, Coarse and Fine Aggregate for Concrete — Specification2016121Search in Google Scholar
IRC:44, Guidelines for Cement Concrete Mix Design for Pavements, (2017) 1–60.IRC:44, Guidelines for Cement Concrete Mix Design for Pavements2017160Search in Google Scholar
S. Marathe, I.R. Mithanthaya, B.M. Mithun, S. Shetty, A. P. K, Performance of slag-fly ash based alkali activated concrete for paver applications utilizing powdered waste glass as a binding ingredient, Int. J. Pavement Res. Technol. (2020). https://doi.org/10.1007/s42947-020-0173-2.MaratheS.MithanthayaI.R.MithunB.M.ShettyS.A. P. K,Performance of slag-fly ash based alkali activated concrete for paver applications utilizing powdered waste glass as a binding ingredientInt. J. Pavement Res. Technol.2020https://doi.org/10.1007/s42947-020-0173-2.Search in Google Scholar
IS 516 (Part 1-Sec 1), Hardened concrete-Methods of test: Part 1 Testing of Strength of Hardened Concrete, Section 1 Compressive, Flexural and Split Tensile Strength, (2021) 1–9. www.standardsbis.in.IS 516 (Part 1-Sec 1), Hardened concrete-Methods of test: Part 1 Testing of Strength of Hardened Concrete, Section 1 Compressive, Flexural and Split Tensile Strength202119www.standardsbis.in.Search in Google Scholar
J.T. Kevern, D. Biddle, Q. Cao, Effects of Macrosynthetic Fibers on Pervious Concrete Properties, J. Mater. Civ. Eng. 27 (2015) 06014031. https://doi.org/10.1061/(asce)mt.1943-5533.0001213.KevernJ.T.BiddleD.CaoQ.Effects of Macrosynthetic Fibers on Pervious Concrete PropertiesJ. Mater. Civ. Eng.27201506014031https://doi.org/10.1061/(asce)mt.1943-5533.0001213.Search in Google Scholar
F. Montes, L. Haselbach, Measuring hydraulic conductivity in pervious concrete, Environ. Eng. Sci. 23 (2006) 960–969. https://doi.org/10.1089/ees.2006.23.960.MontesF.HaselbachL.Measuring hydraulic conductivity in pervious concreteEnviron. Eng. Sci.232006960969https://doi.org/10.1089/ees.2006.23.960.Search in Google Scholar
M.V. Kamath, S. Prashanth, M. Kumar, A. Tantri, Machine-Learning-Algorithm to predict the High-Performance concrete compressive strength using multiple data, J. Eng. Des. Technol. 22 (2024) 532–560. https://doi.org/10.1108/JEDT-11-2021-0637.KamathM.V.PrashanthS.KumarM.TantriA.Machine-Learning-Algorithm to predict the High-Performance concrete compressive strength using multiple dataJ. Eng. Des. Technol.222024532560https://doi.org/10.1108/JEDT-11-2021-0637.Search in Google Scholar
A. Anjum, M. Hrairi, A. Aabid, N. Yatim, M. Ali, Damage detection in concrete structures with impedance data and machine learning, Bull. Polish Acad. Sci. Tech. Sci. 72 (2024) 1–11. https://doi.org/10.24425/bpasts.2024.149178.AnjumA.HrairiM.AabidA.YatimN.AliM.Damage detection in concrete structures with impedance data and machine learningBull. Polish Acad. Sci. Tech. Sci.722024111https://doi.org/10.24425/bpasts.2024.149178.Search in Google Scholar
M.I. Khan, Y.M. Abbas, Robust extreme gradient boosting regression model for compressive strength prediction of blast furnace slag and fly ash concrete, Mater. Today Commun. 35 (2023) 105793. https://doi.org/10.1016/j.mtcomm.2023.105793.KhanM.I.AbbasY.M.Robust extreme gradient boosting regression model for compressive strength prediction of blast furnace slag and fly ash concreteMater. Today Commun.352023105793https://doi.org/10.1016/j.mtcomm.2023.105793.Search in Google Scholar
S. Paudel, A. Pudasaini, R.K. Shrestha, E. Kharel, Compressive strength of concrete material using machine learning techniques, Clean. Eng. Technol. 15 (2023) 1–17. https://doi.org/10.1016/j.clet.2023.100661.PaudelS.PudasainiA.ShresthaR.K.KharelE.Compressive strength of concrete material using machine learning techniquesClean. Eng. Technol.152023117https://doi.org/10.1016/j.clet.2023.100661.Search in Google Scholar
G.T. Truong, K.K. Choi, T.H. Nguyen, C.S. Kim, Prediction of shear strength of RC deep beams using XGBoost regression with Bayesian optimization, Eur. J. Environ. Civ. Eng. 27 (2023) 4046–4066. https://doi.org/10.1080/19648189.2023.2169357.TruongG.T.ChoiK.K.NguyenT.H.KimC.S.Prediction of shear strength of RC deep beams using XGBoost regression with Bayesian optimizationEur. J. Environ. Civ. Eng.27202340464066https://doi.org/10.1080/19648189.2023.2169357.Search in Google Scholar
L.R. Kalabarige, J. Sridhar, S. Subbaram, P. Prasath, R. Gobinath, Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts, Adv. Civ. Eng. (2024) 1–11. https://doi.org/10.1155/2024/7844854.KalabarigeL.R.SridharJ.SubbaramS.PrasathP.GobinathR.Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial ByproductsAdv. Civ. Eng.2024111https://doi.org/10.1155/2024/7844854.Search in Google Scholar
S.S. Pakzad, N. Roshan, M. Ghalehnovi, Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concrete, Sci. Rep. 13 (2023) 1–15. https://doi.org/10.1038/s41598-023-30606-y.PakzadS.S.RoshanN.GhalehnoviM.Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concreteSci. Rep.132023115https://doi.org/10.1038/s41598-023-30606-y.Search in Google Scholar
S. Marathe, T.S. Shetty, B.M. Mithun, A. Ranjith, Strength and durability studies on air cured alkali activated pavement quality concrete mixes incorporating recycled aggregates, Case Stud. Constr. Mater. 15 (2021) 1–13. https://doi.org/10.1016/j.cscm.2021.e00732.MaratheS.ShettyT.S.MithunB.M.RanjithA.Strength and durability studies on air cured alkali activated pavement quality concrete mixes incorporating recycled aggregatesCase Stud. Constr. Mater.152021113https://doi.org/10.1016/j.cscm.2021.e00732.Search in Google Scholar
E.L.C. Filho, G.C. Dos Santos Ferreira, D.C. Nogarotto, S.A. Pozza, Pervious concrete with waste foundry sand: Mechanical and hydraulic properties, Rev. Mater. 27 (2022) e13154. https://doi.org/10.1590/S1517-707620220001.1354.FilhoE.L.C.Dos Santos FerreiraG.C.NogarottoD.C.PozzaS.A.Pervious concrete with waste foundry sand: Mechanical and hydraulic propertiesRev. Mater.272022e13154https://doi.org/10.1590/S1517-707620220001.1354.Search in Google Scholar
K.S. Elango, D. Vivek, G.K. Prakash, M.J. Paranidharan, S. Pradeep, M. Prabhukesavaraj, Strength and permeability studies on PPC binder pervious concrete using palm jaggery as an admixture, Mater. Today Proc. 37 (2020) 2329–2333. https://doi.org/10.1016/j.matpr.2020.08.006.ElangoK.S.VivekD.PrakashG.K.ParanidharanM.J.PradeepS.PrabhukesavarajM.Strength and permeability studies on PPC binder pervious concrete using palm jaggery as an admixtureMater. Today Proc.37202023292333https://doi.org/10.1016/j.matpr.2020.08.006.Search in Google Scholar
Y. Zhang, H. Li, A. Abdelhady, J. Yang, Comparative laboratory measurement of pervious concrete permeability using constant-head and falling-head permeameter methods, Constr. Build. Mater. 263 (2020) 1–11. https://doi.org/10.1016/j.conbuildmat.2020.120614.ZhangY.LiH.AbdelhadyA.YangJ.Comparative laboratory measurement of pervious concrete permeability using constant-head and falling-head permeameter methodsConstr. Build. Mater.2632020111https://doi.org/10.1016/j.conbuildmat.2020.120614.Search in Google Scholar
IS:456, Plain and Reinforced Concrete-Code of Practice, (2000) 1–100.IS:456, Plain and Reinforced Concrete-Code of Practice20001100Search in Google Scholar
P.G. Asteris, A.D. Skentou, A. Bardhan, P. Samui, K. Pilakoutas, Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models, Cem. Concr. Res. 145 (2021) 1–23. https://doi.org/10.1016/j.cemconres.2021.106449.AsterisP.G.SkentouA.D.BardhanA.SamuiP.PilakoutasK.Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning modelsCem. Concr. Res.1452021123https://doi.org/10.1016/j.cemconres.2021.106449.Search in Google Scholar
Ł. Sadowski, M. Piechówka-Mielnik, T. Widziszowski, A. Gardynik, S. Mackiewicz, Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust, J. Clean. Prod. 212 (2019) 727–740. https://doi.org/10.1016/j.jclepro.2018.12.059.SadowskiŁ.Piechówka-MielnikM.WidziszowskiT.GardynikA.MackiewiczS.Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dustJ. Clean. Prod.2122019727740https://doi.org/10.1016/j.jclepro.2018.12.059.Search in Google Scholar