1. bookTom 26 (2021): Zeszyt 1-2 (December 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2084-4506
Pierwsze wydanie
17 Jan 2013
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
access type Otwarty dostęp

Epigenetics is Promising Direction in Modern Science

Data publikacji: 21 Jan 2022
Tom & Zeszyt: Tom 26 (2021) - Zeszyt 1-2 (December 2021)
Zakres stron: 123 - 135
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2084-4506
Pierwsze wydanie
17 Jan 2013
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Abstract

Epigenetics studies the inherited changes in a phenotype or in expression of genes caused by other mechanisms, without changing the nucleotide sequence of DNA. The most distinguished epigenetic tools are: modifications of histones, enzymatic DNA methylation, and gene silencing mediated by small RNAs (miRNA, siRNA). The resulting m5C residues in DNA substantially affect the cooperation of proteins with DNA. It is organized by hormones and aging-related alterations, one of the mechanisms controlling sex and cellular differentiation. DNA methylation regulates all genetic functions: repair, recombination, DNA replication, as well as transcription. Distortions in DNA methylation and other epigenetic signals lead to diabetes, premature aging, mental dysfunctions, and cancer.

Keywords

Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396-8. DOI: 10.1038/nature05913.10.1038/nature05913 Search in Google Scholar

Ashapkin VV, Kutueva LI, Vanyushin BF. The gene for domains rearranged methyltransferase (DRM2) in Arabidopsis thaliana plants is methylated at both cytosine and adenine residues. FEBS Lett. 2002;532(3):367-72. DOI: 10.1016/s0014-5793(02)03711-0.10.1016/S0014-5793(02)03711-0 Search in Google Scholar

Chow J, Heard E. X inactivation and the complexities of silencing a sex chromosome. Current Opinion Cell Biol. 2009;21:359-66. DOI: 10.1016/j.ceb.2009.04.012.10.1016/j.ceb.2009.04.012 Search in Google Scholar

Singh RK, Prasad M. Delineating the epigenetic regulation of heat and drought response in plants. Critical Rev Biotechnol. 2021:1-4. DOI: 10.1080/07388551.2021.1946004.10.1080/07388551.2021.1946004 Search in Google Scholar

Jiang W, Xia T, Liu C, Li J, Zhang W, Sun C. Remodeling the epigenetic landscape of cancer - Application potential of flavonoids in the prevention and treatment of cancer. Frontiers Oncol. 2021;11:2331. DOI: 10.3389/fonc.2021.705903.10.3389/fonc.2021.705903 Search in Google Scholar

Bartholdy B, Lajugie J, Yan Z, Zhang S, Mukhopadhyay R, Greally J. et al. Mechanisms of establishment and functional significance of DNA demethylation during erythroid differentiation. Blood Adv. 2018;2(15):1833-52. DOI: 10.1182/bloodadvances.2018015651.10.1182/bloodadvances.2018015651 Search in Google Scholar

de Oliveira DT, Guerra-Sa R. Uncovering epigenetic landscape: a new path for biomarkers identification and drug development. Molecular Biol Reports. 2020;47:9097-122. DOI: 10.1007/s11033-020-05916-3.10.1007/s11033-020-05916-3 Search in Google Scholar

Ehrlich M. DNA hypermethylation in disease: mechanisms and clinical relevance. J Epigenetics. 2019;14:1141-63. DOI: 10.1080/15592294.2019.1638701.10.1080/15592294.2019.1638701 Search in Google Scholar

Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007;1775:138-62. DOI: 10.1016/j.bbcan.2006.08.007.10.1016/j.bbcan.2006.08.007 Search in Google Scholar

Le Hellard S, Keller MC, Andreassen OA, Deary IJ, Glahn DC, Malhotra AK. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Mol Psychiatry. 2017;22(3):336-45. DOI: 10.1038/mp.2016.244.10.1038/mp.2016.244 Search in Google Scholar

Ashapkin VV, Kutueva LI, Vanyushin BF. Aging as an epigenetic phenomenon. Curr Genomics. 2017;18(5):385-407. DOI: 10.2174/1389202918666170412112130.10.2174/1389202918666170412112130 Search in Google Scholar

Ryabukha OI, Fedorenko VI. To the structural and functional preconditions of the emergence of thyroid pathology (literature review). Medicni Perspektivi. 2021;26(3):169-78. DOI: 10.26641/2307-0404.2021.3.242253.10.26641/2307-0404.2021.3.242253 Search in Google Scholar

Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic clock: Just a convenient marker or an active driver of aging? Adv Exp Med Biol. 2019;1178:175-206. DOI: 10.1007/978-3-030-25650-0_10.10.1007/978-3-030-25650-0_10 Search in Google Scholar

Gangisetty O, Cabrera MA, Murugan S. Impact of epigenetics in aging and age related neurodegenerative diseases. Front Biosci (Landmark Ed). 2018;23:1445-64. DOI: 10.2741/4654.10.2741/4654 Search in Google Scholar

Korda Z, Pishva E, van den Hove DL. Epigenetics in Drug Discovery: Achievements and Challenges. In: Modern CNS Drug Discovery. Cham: Springer; 2021;57-75. DOI: 10.1007/978-3-030-62351-7_4.10.1007/978-3-030-62351-7_4 Search in Google Scholar

Oda M, Glass JL, Thompson RF, Mo Y, Olivier EN, Figueroa ME et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res. 2009;37:3829-39. DOI: 10.1093/nar/gkp260.10.1093/nar/gkp260 Search in Google Scholar

Yi SV, Goodisman MA. The impact of epigenetic information on genome evolution. Phil Trans Royal Soc B. 2021;376(1826):20200114. DOI: 10.1098/rstb.2020.0114.10.1098/rstb.2020.0114 Search in Google Scholar

Baribault C, Ehrlich KC, Ponnaluri VKC. Developmentally linked human DNA hypermethylation is associated with down-modulation, repression, and upregulation of transcription. Epigenetics. 2018;2:1-15. DOI: 10.1080/15592294.2018.1445900.10.1080/15592294.2018.1445900 Search in Google Scholar

Kundakovic M, Jiang Y, Kavanagh DH, Dincer A, Brown L, Pothula V, et al. Practical guidelines for high-resolution epigenomic profiling of nucleosomal histones in postmortem human brain tissue. Biol Psychiatry. 2017;81(2);162-70. DOI: 10.1016/j.Biopsych.2016.03.1048.10.1016/j.biopsych.2016.03.1048 Search in Google Scholar

Aref-Eshghi E, Rodenhiser DI, Schenkel LC. Genomic DNA methylation signatures enable concurrent diagnosis and clinical genetic variant classification in neurodevelopmental syndromes. Am J Hum Genet. 2018;102(1):156-74. DOI: 10.1016/j.ajhg.2017.12.008.10.1016/j.ajhg.2017.12.008 Search in Google Scholar

Mazzone R, Zwergel C, Artico M. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics. 2019;11(1):34. DOI: 10.1186/s13148-019-0632-2.10.1186/s13148-019-0632-2 Search in Google Scholar

Evans LM, Tahmasbi R, Vrieze SI, Abecasis GR, Das S, Gazal S, et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat Genet. 2018; 50(5):737-45. DOI: 10.1038/s41588-018-0108-x.10.1038/s41588-018-0108-x Search in Google Scholar

Collings CK, Anderson JN. Links between DNA methylation and nucleosome occupancy in the human genome. Epigenetics Chromatin. 2017;10(18):1-19. DOI: 10.1186/s13072-017-0125-5.10.1186/s13072-017-0125-5 Search in Google Scholar

Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol. 2019;54(1):61-83. DOI: 10.1080/10409238.2019.1570075.10.1080/10409238.2019.1570075 Search in Google Scholar

Ummarino S, Hausman C, Gaggi G, Rinaldi L, Bassal MA, Zhang Y, et al. NAD modulates DNA methylation and cell differentiation. Cells. 2021;10(11):2986:1-17. DOI: 10.3390/cells10112986.10.3390/cells10112986 Search in Google Scholar

Mochizuki K, Hariya N, Kubota T. Novel models of epigenetic gene regulation in the nutritional environment. Adv Exp Med Biol. 2018;1012:11-8. DOI: 10.1007/978-981-10-5526-3_2.10.1007/978-981-10-5526-3_2 Search in Google Scholar

Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med. 2021;170:70-84. DOI: 10.1016/j.freeradbiomed.2021.01.008.10.1016/j.freeradbiomed.2021.01.008 Search in Google Scholar

Domann FE, Hitchler MJ. Aberrant redox biology and epigenetic reprogramming: Co-conspirators across multiple human diseases. Free Radic Biol Med. 2021;170:2-5. DOI: 10.1016/j.freeradbiomed.2021.04.020.10.1016/j.freeradbiomed.2021.04.020 Search in Google Scholar

Lamadema N, Burr S, Brewer AC. Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med. 2019;131:282-98. DOI: 10.1016/j.freeradbiomed.2018.12.009.10.1016/j.freeradbiomed.2018.12.009 Search in Google Scholar

Kumar SRM, Wang Y, Zhang X, Cheng H, Sun L, He S, et al. Redox components: key regulators of epigenetic modifications in plants. Int J Mol Sci. 2020;21(4):1419. DOI: 10.3390/ijms21041419.10.3390/ijms21041419 Search in Google Scholar

Kumar S., Chinnusamy V., Mohapatra T. Epigenetics of modified DNA bases: 5-Methylcytosine and beyond. Front Genet. 2018;9:640-54. DOI: 10.3389/fgene.2018.00640.10.3389/fgene.2018.00640 Search in Google Scholar

Kumar S, Cheng X, Klimasauskas S. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994;22(1):1-10. DOI: 10.1093/nar/22.1.1.10.1093/nar/22.1.1 Search in Google Scholar

Rocha MS, Castro R, Rivera I, Kok RM, Smulders YM, Jakobs C. Global DNA methylation: comparison of enzymatic- and non-enzymatic-based methods. Clinical Chem Lab Medicine. 2010;48:1793-8. DOI: 10.1515/CCLM.2010.346.10.1515/CCLM.2010.346 Search in Google Scholar

Neri F, Incarnato D, Oliviero S. DNA methylation and demethylation dynamics. Oncotarget. 2015;6(33):34049-50. DOI: 10.18632/oncotarget.6039.10.18632/oncotarget.6039 Search in Google Scholar

Ito K, Barnes PJ, Adcock IM. Histone acetylation and deacetylation. Methods Mol Med. 2000;44:309-19. DOI: 10.1385/1-59259-072-1:309.10.1385/1-59259-072-1:309 Search in Google Scholar

Rossetto D, Avvakumov N, Côté J. Histone phosphorylation. Epigenetics. 2012;7(10):1098-108. DOI: 10.4161/epi.21975.10.4161/epi.21975 Search in Google Scholar

Osta AE, Wolffe AP. DNA Methylation and histone deacetylation in the control of gene expression: Basic biochemistry to human development and disease. Gene Expr. 2000;9(1-2):63-75. DOI: 10.3727/000000001783992731.10.3727/000000001783992731 Search in Google Scholar

Matzke MA, Matzke AJ. Homology dependent gene silencing in transgenic plants: what does it really tells us. Trends Genet. 1995;11(1):1-2. DOI: 10.1016/s0168-9525(00)88973-8.10.1016/S0168-9525(00)88973-8 Search in Google Scholar

Santos JH. Mitochondria signaling to the epigenome: A novel role for an old organelle. Free Radic Biol Med. 2021;170:59-69. DOI: 10.1016/j.freeradbiomed.2020.11.016. PMID: 3327128210.1016/j.freeradbiomed.2020.11.016 Search in Google Scholar

Stefanowicz D, Ullah J, Lee K, Shaheen F, Olumese E, Fishbane N, et al. Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts. BMC Pulm Med. 2017;17(1):1-11. DOI: 10.1186/s12890-017-0371-0.10.1186/s12890-017-0371-0 Search in Google Scholar

Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic Biol Med. 2021;170:19-33. DOI: 10.1016/j.freeradbiomed.2020.12.002.10.1016/j.freeradbiomed.2020.12.002 Search in Google Scholar

Hamza M, Halayem S, Mrad R, Bourgou S, Charfi F, Belhadj A. Epigenetics' implication in autism spectrum disorders: A review. Encephale. 2017;43(4):374-81. DOI: 10.1016/j.encep.2016.07.00710.1016/j.encep.2016.07.007 Search in Google Scholar

Brewer AC. Physiological interrelationships between NADPH oxidases and chromatin remodeling. Free Radic Biol Med. 2021;170:109-15. DOI: 10.1016/j.freeradbiomed.2021.01.052.10.1016/j.freeradbiomed.2021.01.052 Search in Google Scholar

Xiao X, Liu X, Jiao B. Epigenetics: Recent advances and its role in the treatment of Alzheimer's disease. Front Neurol. 2020;11:538301. DOI: 10.3389/fneur.2020.538301.10.3389/fneur.2020.538301 Search in Google Scholar

Xu M, Zhu J, Liu XD, Luo MY, Xu NJ. Roles of physical exercise in neurodegeneration: reversal of epigenetic clock. Transl Neurodegener. 2021;10:30-45. DOI: 10.1186/s40035-021-00254-1.10.1186/s40035-021-00254-1 Search in Google Scholar

Wang L, Yu CC, Liu XY, Deng XN, Tian Q, Du YJ. Epigenetic modulation of microglia function and phenotypes in neurodegenerative diseases. Neural Plast. 2021;2021:1-13. DOI: 10.1155/2021/9912686.10.1155/2021/9912686 Search in Google Scholar

Pierandrei S, Truglio G, Ceci F, Del Porto P, Bruno SM, Castellani S, et al. M. DNA methylation patterns correlate with the expression of SCNN1A, SCNN1B, and SCNN1G (epithelial sodium channel, ENaC) genes. Int J Mol Sci. 2021;22:3754. DOI: 10.3390/ijms22073754.10.3390/ijms22073754 Search in Google Scholar

Hogan R, Flamier A, Nardini E, Bernier G. The role of BMI1 in late-onset sporadic Alzheimer's disease. Genes (Basel). 2020;11:E825. DOI: 10.3390/genes11070825.10.3390/genes11070825 Search in Google Scholar

Murshid NM, Lubis FA, Makpol S. Epigenetic changes and its intervention in age-related neurodegenerative diseases. Cellular Molecular Neurobiol. 2020. DOI: 10.1007/s10571-020-00979-z.10.1007/s10571-020-00979-z Search in Google Scholar

Titcombe P, Murray R, Hewitt M, Antoun E, Cooper C, Inskip HM, et al. Human non-CpG methylation patterns display both tissue-specific and inter-individual differences suggestive of underlying function. Epigenetics. 2021:1-12. DOI: 10.1080/15592294.2021.1950990.10.1080/15592294.2021.1950990 Search in Google Scholar

Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radical Biol Med. 2021;170:19-33. DOI: 10.1016/j.freeradbiomed.2020.12.002.10.1016/j.freeradbiomed.2020.12.002 Search in Google Scholar

Domann FE, Hitchler MJ. Introduction to the special issue on ‘epigenetics and redox signaling’. Free Radical Biol Med. 2021;170. DOI: 10.1016/j.freeradbiomed.2021.04.015.10.1016/j.freeradbiomed.2021.04.015 Search in Google Scholar

García-Giménez J-L. Garcés C, Romá-Mateo C, Pallardó FV. Oxidative stress-mediated alterations in histone post-translational modifications. Free Radical Biol Med. 2021;170:6-18. DOI: 10.1016/j.freeradbiomed.2021.02.027.10.1016/j.freeradbiomed.2021.02.027 Search in Google Scholar

Fernandez A, O'Leary C, O'Byrne KJ, Burgess J, Richard DJ, Suraweera A. Epigenetic mechanisms in DNA double strand break repair: A clinical review. Front Mol Biosci. 2021;8:685440. DOI: 10.3389/fmolb.2021.685440.10.3389/fmolb.2021.685440 Search in Google Scholar

Yang B, Chen Q. Cross-talk between oxidative stress and m6A RNA methylation in cancer. Oxid Med Cell Longev. 2021:1-26. DOI: 10.1155/2021/6545728.10.1155/2021/6545728 Search in Google Scholar

Börner JH, Rawashdeh O, Rami A. Exacerbated age-related hippocampal alterations of microglia morphology, β-amyloid and lipofuscin deposition and presenilin overexpression in per1−/−-mice. Antioxidants (Basel). 2021;10(9):1330. DOI: 10.3390/antiox10091330.10.3390/antiox10091330 Search in Google Scholar

Ebrahimi SO, Reiisi S, Shareef S. miRNAs, oxidative stress, and cancer: A comprehensive and updated review. J Cell Physiol. 2020;235(11):8812-25. DOI: 10.1002/jcp.29724.10.1002/jcp.29724 Search in Google Scholar

Dionisio PA, Amaral JD, Rodrigues CMP. Oxidative stress and regulated cell death in Parkinson's disease. Ageing Res Rev. 2021;67. DOI: 10.1016/j.arr.2021.101263.10.1016/j.arr.2021.101263 Search in Google Scholar

Barbieri M. A new theory of development: the generation of complexity in ontogenesis. Phil Trans Royal Soc Math Phys Eng Sci. 2016:1-13. DOI: 10.1098/rsta.2015.0148.10.1098/rsta.2015.0148 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo