Epigenetics studies the inherited changes in a phenotype or in expression of genes caused by other mechanisms, without changing the nucleotide sequence of DNA. The most distinguished epigenetic tools are: modifications of histones, enzymatic DNA methylation, and gene silencing mediated by small RNAs (miRNA, siRNA). The resulting m5C residues in DNA substantially affect the cooperation of proteins with DNA. It is organized by hormones and aging-related alterations, one of the mechanisms controlling sex and cellular differentiation. DNA methylation regulates all genetic functions: repair, recombination, DNA replication, as well as transcription. Distortions in DNA methylation and other epigenetic signals lead to diabetes, premature aging, mental dysfunctions, and cancer.
Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396-8. DOI: 10.1038/nature05913.10.1038/nature05913Search in Google Scholar
Ashapkin VV, Kutueva LI, Vanyushin BF. The gene for domains rearranged methyltransferase (DRM2) in Arabidopsis thaliana plants is methylated at both cytosine and adenine residues. FEBS Lett. 2002;532(3):367-72. DOI: 10.1016/s0014-5793(02)03711-0.10.1016/S0014-5793(02)03711-0Search in Google Scholar
Chow J, Heard E. X inactivation and the complexities of silencing a sex chromosome. Current Opinion Cell Biol. 2009;21:359-66. DOI: 10.1016/j.ceb.2009.04.012.10.1016/j.ceb.2009.04.012Search in Google Scholar
Singh RK, Prasad M. Delineating the epigenetic regulation of heat and drought response in plants. Critical Rev Biotechnol. 2021:1-4. DOI: 10.1080/07388551.2021.1946004.10.1080/07388551.2021.1946004Search in Google Scholar
Jiang W, Xia T, Liu C, Li J, Zhang W, Sun C. Remodeling the epigenetic landscape of cancer - Application potential of flavonoids in the prevention and treatment of cancer. Frontiers Oncol. 2021;11:2331. DOI: 10.3389/fonc.2021.705903.10.3389/fonc.2021.705903Search in Google Scholar
Bartholdy B, Lajugie J, Yan Z, Zhang S, Mukhopadhyay R, Greally J. et al. Mechanisms of establishment and functional significance of DNA demethylation during erythroid differentiation. Blood Adv. 2018;2(15):1833-52. DOI: 10.1182/bloodadvances.2018015651.10.1182/bloodadvances.2018015651Search in Google Scholar
de Oliveira DT, Guerra-Sa R. Uncovering epigenetic landscape: a new path for biomarkers identification and drug development. Molecular Biol Reports. 2020;47:9097-122. DOI: 10.1007/s11033-020-05916-3.10.1007/s11033-020-05916-3Search in Google Scholar
Ehrlich M. DNA hypermethylation in disease: mechanisms and clinical relevance. J Epigenetics. 2019;14:1141-63. DOI: 10.1080/15592294.2019.1638701.10.1080/15592294.2019.1638701Search in Google Scholar
Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007;1775:138-62. DOI: 10.1016/j.bbcan.2006.08.007.10.1016/j.bbcan.2006.08.007Search in Google Scholar
Le Hellard S, Keller MC, Andreassen OA, Deary IJ, Glahn DC, Malhotra AK. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Mol Psychiatry. 2017;22(3):336-45. DOI: 10.1038/mp.2016.244.10.1038/mp.2016.244Search in Google Scholar
Ashapkin VV, Kutueva LI, Vanyushin BF. Aging as an epigenetic phenomenon. Curr Genomics. 2017;18(5):385-407. DOI: 10.2174/1389202918666170412112130.10.2174/1389202918666170412112130Search in Google Scholar
Ryabukha OI, Fedorenko VI. To the structural and functional preconditions of the emergence of thyroid pathology (literature review). Medicni Perspektivi. 2021;26(3):169-78. DOI: 10.26641/2307-0404.2021.3.242253.10.26641/2307-0404.2021.3.242253Search in Google Scholar
Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic clock: Just a convenient marker or an active driver of aging? Adv Exp Med Biol. 2019;1178:175-206. DOI: 10.1007/978-3-030-25650-0_10.10.1007/978-3-030-25650-0_10Search in Google Scholar
Gangisetty O, Cabrera MA, Murugan S. Impact of epigenetics in aging and age related neurodegenerative diseases. Front Biosci (Landmark Ed). 2018;23:1445-64. DOI: 10.2741/4654.10.2741/4654Search in Google Scholar
Korda Z, Pishva E, van den Hove DL. Epigenetics in Drug Discovery: Achievements and Challenges. In: Modern CNS Drug Discovery. Cham: Springer; 2021;57-75. DOI: 10.1007/978-3-030-62351-7_4.10.1007/978-3-030-62351-7_4Search in Google Scholar
Oda M, Glass JL, Thompson RF, Mo Y, Olivier EN, Figueroa ME et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res. 2009;37:3829-39. DOI: 10.1093/nar/gkp260.10.1093/nar/gkp260Search in Google Scholar
Yi SV, Goodisman MA. The impact of epigenetic information on genome evolution. Phil Trans Royal Soc B. 2021;376(1826):20200114. DOI: 10.1098/rstb.2020.0114.10.1098/rstb.2020.0114Search in Google Scholar
Baribault C, Ehrlich KC, Ponnaluri VKC. Developmentally linked human DNA hypermethylation is associated with down-modulation, repression, and upregulation of transcription. Epigenetics. 2018;2:1-15. DOI: 10.1080/15592294.2018.1445900.10.1080/15592294.2018.1445900Search in Google Scholar
Kundakovic M, Jiang Y, Kavanagh DH, Dincer A, Brown L, Pothula V, et al. Practical guidelines for high-resolution epigenomic profiling of nucleosomal histones in postmortem human brain tissue. Biol Psychiatry. 2017;81(2);162-70. DOI: 10.1016/j.Biopsych.2016.03.1048.10.1016/j.biopsych.2016.03.1048Search in Google Scholar
Aref-Eshghi E, Rodenhiser DI, Schenkel LC. Genomic DNA methylation signatures enable concurrent diagnosis and clinical genetic variant classification in neurodevelopmental syndromes. Am J Hum Genet. 2018;102(1):156-74. DOI: 10.1016/j.ajhg.2017.12.008.10.1016/j.ajhg.2017.12.008Search in Google Scholar
Mazzone R, Zwergel C, Artico M. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics. 2019;11(1):34. DOI: 10.1186/s13148-019-0632-2.10.1186/s13148-019-0632-2Search in Google Scholar
Evans LM, Tahmasbi R, Vrieze SI, Abecasis GR, Das S, Gazal S, et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat Genet. 2018; 50(5):737-45. DOI: 10.1038/s41588-018-0108-x.10.1038/s41588-018-0108-xSearch in Google Scholar
Collings CK, Anderson JN. Links between DNA methylation and nucleosome occupancy in the human genome. Epigenetics Chromatin. 2017;10(18):1-19. DOI: 10.1186/s13072-017-0125-5.10.1186/s13072-017-0125-5Search in Google Scholar
Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol. 2019;54(1):61-83. DOI: 10.1080/10409238.2019.1570075.10.1080/10409238.2019.1570075Search in Google Scholar
Ummarino S, Hausman C, Gaggi G, Rinaldi L, Bassal MA, Zhang Y, et al. NAD modulates DNA methylation and cell differentiation. Cells. 2021;10(11):2986:1-17. DOI: 10.3390/cells10112986.10.3390/cells10112986Search in Google Scholar
Mochizuki K, Hariya N, Kubota T. Novel models of epigenetic gene regulation in the nutritional environment. Adv Exp Med Biol. 2018;1012:11-8. DOI: 10.1007/978-981-10-5526-3_2.10.1007/978-981-10-5526-3_2Search in Google Scholar
Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med. 2021;170:70-84. DOI: 10.1016/j.freeradbiomed.2021.01.008.10.1016/j.freeradbiomed.2021.01.008Search in Google Scholar
Domann FE, Hitchler MJ. Aberrant redox biology and epigenetic reprogramming: Co-conspirators across multiple human diseases. Free Radic Biol Med. 2021;170:2-5. DOI: 10.1016/j.freeradbiomed.2021.04.020.10.1016/j.freeradbiomed.2021.04.020Search in Google Scholar
Lamadema N, Burr S, Brewer AC. Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med. 2019;131:282-98. DOI: 10.1016/j.freeradbiomed.2018.12.009.10.1016/j.freeradbiomed.2018.12.009Search in Google Scholar
Kumar SRM, Wang Y, Zhang X, Cheng H, Sun L, He S, et al. Redox components: key regulators of epigenetic modifications in plants. Int J Mol Sci. 2020;21(4):1419. DOI: 10.3390/ijms21041419.10.3390/ijms21041419Search in Google Scholar
Kumar S., Chinnusamy V., Mohapatra T. Epigenetics of modified DNA bases: 5-Methylcytosine and beyond. Front Genet. 2018;9:640-54. DOI: 10.3389/fgene.2018.00640.10.3389/fgene.2018.00640Search in Google Scholar
Kumar S, Cheng X, Klimasauskas S. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994;22(1):1-10. DOI: 10.1093/nar/22.1.1.10.1093/nar/22.1.1Search in Google Scholar
Rocha MS, Castro R, Rivera I, Kok RM, Smulders YM, Jakobs C. Global DNA methylation: comparison of enzymatic- and non-enzymatic-based methods. Clinical Chem Lab Medicine. 2010;48:1793-8. DOI: 10.1515/CCLM.2010.346.10.1515/CCLM.2010.346Search in Google Scholar
Neri F, Incarnato D, Oliviero S. DNA methylation and demethylation dynamics. Oncotarget. 2015;6(33):34049-50. DOI: 10.18632/oncotarget.6039.10.18632/oncotarget.6039Search in Google Scholar
Ito K, Barnes PJ, Adcock IM. Histone acetylation and deacetylation. Methods Mol Med. 2000;44:309-19. DOI: 10.1385/1-59259-072-1:309.10.1385/1-59259-072-1:309Search in Google Scholar
Rossetto D, Avvakumov N, Côté J. Histone phosphorylation. Epigenetics. 2012;7(10):1098-108. DOI: 10.4161/epi.21975.10.4161/epi.21975Search in Google Scholar
Osta AE, Wolffe AP. DNA Methylation and histone deacetylation in the control of gene expression: Basic biochemistry to human development and disease. Gene Expr. 2000;9(1-2):63-75. DOI: 10.3727/000000001783992731.10.3727/000000001783992731Search in Google Scholar
Matzke MA, Matzke AJ. Homology dependent gene silencing in transgenic plants: what does it really tells us. Trends Genet. 1995;11(1):1-2. DOI: 10.1016/s0168-9525(00)88973-8.10.1016/S0168-9525(00)88973-8Search in Google Scholar
Santos JH. Mitochondria signaling to the epigenome: A novel role for an old organelle. Free Radic Biol Med. 2021;170:59-69. DOI: 10.1016/j.freeradbiomed.2020.11.016. PMID: 3327128210.1016/j.freeradbiomed.2020.11.016Search in Google Scholar
Stefanowicz D, Ullah J, Lee K, Shaheen F, Olumese E, Fishbane N, et al. Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts. BMC Pulm Med. 2017;17(1):1-11. DOI: 10.1186/s12890-017-0371-0.10.1186/s12890-017-0371-0Search in Google Scholar
Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic Biol Med. 2021;170:19-33. DOI: 10.1016/j.freeradbiomed.2020.12.002.10.1016/j.freeradbiomed.2020.12.002Search in Google Scholar
Hamza M, Halayem S, Mrad R, Bourgou S, Charfi F, Belhadj A. Epigenetics' implication in autism spectrum disorders: A review. Encephale. 2017;43(4):374-81. DOI: 10.1016/j.encep.2016.07.00710.1016/j.encep.2016.07.007Search in Google Scholar
Brewer AC. Physiological interrelationships between NADPH oxidases and chromatin remodeling. Free Radic Biol Med. 2021;170:109-15. DOI: 10.1016/j.freeradbiomed.2021.01.052.10.1016/j.freeradbiomed.2021.01.052Search in Google Scholar
Xiao X, Liu X, Jiao B. Epigenetics: Recent advances and its role in the treatment of Alzheimer's disease. Front Neurol. 2020;11:538301. DOI: 10.3389/fneur.2020.538301.10.3389/fneur.2020.538301Search in Google Scholar
Xu M, Zhu J, Liu XD, Luo MY, Xu NJ. Roles of physical exercise in neurodegeneration: reversal of epigenetic clock. Transl Neurodegener. 2021;10:30-45. DOI: 10.1186/s40035-021-00254-1.10.1186/s40035-021-00254-1Search in Google Scholar
Wang L, Yu CC, Liu XY, Deng XN, Tian Q, Du YJ. Epigenetic modulation of microglia function and phenotypes in neurodegenerative diseases. Neural Plast. 2021;2021:1-13. DOI: 10.1155/2021/9912686.10.1155/2021/9912686Search in Google Scholar
Pierandrei S, Truglio G, Ceci F, Del Porto P, Bruno SM, Castellani S, et al. M. DNA methylation patterns correlate with the expression of SCNN1A, SCNN1B, and SCNN1G (epithelial sodium channel, ENaC) genes. Int J Mol Sci. 2021;22:3754. DOI: 10.3390/ijms22073754.10.3390/ijms22073754Search in Google Scholar
Hogan R, Flamier A, Nardini E, Bernier G. The role of BMI1 in late-onset sporadic Alzheimer's disease. Genes (Basel). 2020;11:E825. DOI: 10.3390/genes11070825.10.3390/genes11070825Search in Google Scholar
Murshid NM, Lubis FA, Makpol S. Epigenetic changes and its intervention in age-related neurodegenerative diseases. Cellular Molecular Neurobiol. 2020. DOI: 10.1007/s10571-020-00979-z.10.1007/s10571-020-00979-zSearch in Google Scholar
Titcombe P, Murray R, Hewitt M, Antoun E, Cooper C, Inskip HM, et al. Human non-CpG methylation patterns display both tissue-specific and inter-individual differences suggestive of underlying function. Epigenetics. 2021:1-12. DOI: 10.1080/15592294.2021.1950990.10.1080/15592294.2021.1950990Search in Google Scholar
Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radical Biol Med. 2021;170:19-33. DOI: 10.1016/j.freeradbiomed.2020.12.002.10.1016/j.freeradbiomed.2020.12.002Search in Google Scholar
Domann FE, Hitchler MJ. Introduction to the special issue on ‘epigenetics and redox signaling’. Free Radical Biol Med. 2021;170. DOI: 10.1016/j.freeradbiomed.2021.04.015.10.1016/j.freeradbiomed.2021.04.015Search in Google Scholar
García-Giménez J-L. Garcés C, Romá-Mateo C, Pallardó FV. Oxidative stress-mediated alterations in histone post-translational modifications. Free Radical Biol Med. 2021;170:6-18. DOI: 10.1016/j.freeradbiomed.2021.02.027.10.1016/j.freeradbiomed.2021.02.027Search in Google Scholar
Fernandez A, O'Leary C, O'Byrne KJ, Burgess J, Richard DJ, Suraweera A. Epigenetic mechanisms in DNA double strand break repair: A clinical review. Front Mol Biosci. 2021;8:685440. DOI: 10.3389/fmolb.2021.685440.10.3389/fmolb.2021.685440Search in Google Scholar
Yang B, Chen Q. Cross-talk between oxidative stress and m6A RNA methylation in cancer. Oxid Med Cell Longev. 2021:1-26. DOI: 10.1155/2021/6545728.10.1155/2021/6545728Search in Google Scholar
Börner JH, Rawashdeh O, Rami A. Exacerbated age-related hippocampal alterations of microglia morphology, β-amyloid and lipofuscin deposition and presenilin overexpression in per1−/−-mice. Antioxidants (Basel). 2021;10(9):1330. DOI: 10.3390/antiox10091330.10.3390/antiox10091330Search in Google Scholar
Ebrahimi SO, Reiisi S, Shareef S. miRNAs, oxidative stress, and cancer: A comprehensive and updated review. J Cell Physiol. 2020;235(11):8812-25. DOI: 10.1002/jcp.29724.10.1002/jcp.29724Search in Google Scholar
Dionisio PA, Amaral JD, Rodrigues CMP. Oxidative stress and regulated cell death in Parkinson's disease. Ageing Res Rev. 2021;67. DOI: 10.1016/j.arr.2021.101263.10.1016/j.arr.2021.101263Search in Google Scholar
Barbieri M. A new theory of development: the generation of complexity in ontogenesis. Phil Trans Royal Soc Math Phys Eng Sci. 2016:1-13. DOI: 10.1098/rsta.2015.0148.10.1098/rsta.2015.0148Search in Google Scholar