Zacytuj

[1] Abrahão, F. R., Corrêa, J. L. G., Osmotic dehydration: More than water loss and solid gain. Critical Reviews in Food Science and Nutrition, 29. (2021) 1–20.10.1080/10408398.2021.1983764 Search in Google Scholar

[2] Ahmed, I., Qazi, I. M., Jamal, S., Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science & Emerging Technologies, 34. (2016) 29–43.10.1016/j.ifset.2016.01.003 Search in Google Scholar

[3] Assis, F. R., Morais, R., Morais, A. M., Mass transfer in osmotic dehydration of food products: Comparison between mathematical models. Food Engineering Reviews, 8. 2. (2016) 116–133.10.1007/s12393-015-9123-1 Search in Google Scholar

[4] Ayub, H., Ahmad, A., Amir, R. M., Irshad, G., Multivariate analysis of peach quality treated with essential oil coatings. Journal of Food Processing and Preservation, 45. 1. (2021) e15083.10.1111/jfpp.15083 Search in Google Scholar

[5] Bulatović, M. L., Vukoje, V., Milić, D., Economic indicators of the production of important fruit-specific species in Vojvodina. Economics of Agriculture, 64. 3. (2017) 973–985.10.5937/ekoPolj1703973L Search in Google Scholar

[6] Chandra, S., Kumari, D., Recent development in osmotic dehydration of fruit and vegetables: A review. Critical Reviews in Food Science and Nutrition, 55. 4. (2015) 552–561.10.1080/10408398.2012.66483024915357 Search in Google Scholar

[7] Chavan, U. D., Amarowicz, R., Osmotic dehydration process for preservation of fruits and vegetables. Journal of Food Research, 1. 2. (2012) 202–209.10.5539/jfr.v1n2p202 Search in Google Scholar

[8] Ćurčić, B., Filipović, V., Nićetin, M., Mišljenović, N., Pezo, L., Evaluation of mass transfer kinetics and efficiency of osmotic dehydration of pork meat. Acta Univeritatis Sapientiae, Alimentaria, 7. (2014) 63–72. Search in Google Scholar

[9] González-Pérez, J. E., Ramírez-Corona, N., López-Malo, A., Mass transfer during osmotic dehydration of fruits and vegetables: Process factors and non-thermal methods. Food Engineering Reviews, 13. 2. (2021) 344–374.10.1007/s12393-020-09276-3 Search in Google Scholar

[10] Koprivica, G., Mišljenović, N., Lević, L., Jevrić, L., Mass transfer kinetics during osmotic dehydration of plum in sugar beet molasses. Journal on Processing and Energy in Agriculture, 14. 1. (2010) 27–31. Search in Google Scholar

[11] Kutlu, N., Optimization of ohmic heating-assisted osmotic dehydration as a pretreatment for microwave drying. Food Science and Technology International, 28. 1. (2021) 61–71.10.1177/108201322199161333563038 Search in Google Scholar

[12] Lin, M., Chen, J., Chen, F., Zhu, C., Wu, D., Wang, J., Chen, K., Effects of cushioning materials and temperature on quality damage of ripe peaches according to the vibration test. Food Packaging and Shelf Life, 25. (2020) 100518.10.1016/j.fpsl.2020.100518 Search in Google Scholar

[13] Lončar, B., Nićetin, M., Filipović, V., Knežević, V., Pezo, L., Šuput, D., Kuljanin, T., Osmotic dehydration in sugar beet molasses-food safety and quality benefits. Journal of Hygienic Engineering and Design, 34. (2021) 15–20. Search in Google Scholar

[14] Mihaylova, D., Popova, A., Vrancheva, R., Dincheva I., HS-SPME-GC–MS volatile profile characterization of peach (Prunus persica L. Batsch) varieties grown in the Eastern Balkan Peninsula. Plants, 11. 2. (2022) 166.10.3390/plants11020166877842535050054 Search in Google Scholar

[15] Najafi, A. H., Yusof, Y. A., Rahman, R. A., Ganjloo, A., Ling, C. N., Effect of osmotic dehydration process using sucrose solution at mild temperature on mass transfer and quality attributes of red pitaya (Hylocereus polyrhizusis). International Food Research Journal, 21. 2. (2014) 625–630. Search in Google Scholar

[16] Nićetin, M., Lončar, B., Filipović, V., Cvetković, B., Filipović, J., Knežević, V., Pezo, L., Analysis of mass transfer rate and efficiency of osmotic dehydration of wild garlic. Food Quality and Safety, Health and Nutrition – NUTRICON, 9–11.06.2021, Macedonia. (2021) 140–141. Search in Google Scholar

[17] Nićetin, M., Pezo, L., Filipović, V., Lončar, B., Filipović, J., Šuput, D., Knežević, V., The effects of solution type temperature and time on antioxidant capacity of osmotically dried celery leaves. Thermal Science, 25. (2021a) 1759. Search in Google Scholar

[18] Nićetin, M., Pezo, L., Lončar, B., Filipović, V., Kuljanin, T., Knežević, V., Šuput, D., Mass transfer kinetics and efficiency of osmotic dehydration of celery leaves. Journal on Processing Energy in Agriculture, 18. 3. (2014) 137–139. Search in Google Scholar

[19] Prithani, R., Dash, K. K., Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innovative Food Science & Emerging Technologies, 64. (2020) 102407.10.1016/j.ifset.2020.102407 Search in Google Scholar

[20] Ramya, V., Jain, N. K., A review on osmotic dehydration of fruits and Vegetables: An integrated approach. Journal of Food Process Engineering, 40. (2017) 12440.10.1111/jfpe.12440 Search in Google Scholar

[21] Sakooei-Vayghan, R., Peighambardoust, S. H., Hesari, J., Peressini, D., Effects of osmotic dehydration (with and without sonication) and pectin-based coating pretreatments on functional properties and color of hot-air dried apricot cubes. Food Chemistry, 311. (2020) 125978.10.1016/j.foodchem.2019.12597831865114 Search in Google Scholar

[22] Shete, Y. V., Chavan, S. M., Champawat, P. S., Jain, S. K., Reviews on osmotic dehydration of fruits and vegetables. Journal of Pharmacognosy and Phytochemistry, 7. 2. (2018) 1964–1969. Search in Google Scholar

[23] The Association of Analytical Communities (AOAC), Official Methods of Analysis. Washington DC, USA, 2000. Search in Google Scholar

[24] Veerappan, K., Natarajan, S., Chung, H., Park, J., Molecular insights of fruit quality traits in peaches, Prunus persica. Plants, 10. 10. (2021) 2191.10.3390/plants10102191854110834686000 Search in Google Scholar

eISSN:
2066-7744
Język:
Angielski