1. bookTom 20 (2020): Zeszyt 4 (October 2020)
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Otwarty dostęp

Biosensors in Evaluation of Quality of Meat and Meat Products – A Review

Data publikacji: 07 Nov 2020
Tom & Zeszyt: Tom 20 (2020) - Zeszyt 4 (October 2020)
Zakres stron: 1151 - 1168
Otrzymano: 29 Oct 2019
Przyjęty: 18 May 2020
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku

Adley C.(2014). Past, present and future of sensors in food production. Foods, 3: 491–510.Search in Google Scholar

Albelda J.A.V., Uzunoglu A., Santos G.N.C., Stanciu L.A.(2016). Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosens. Bioelectron., 89: 518–524.Search in Google Scholar

Aristoy M.C., ToldráF.(2009). Nucleotides and its derived compounds. In: Handbook of Muscle Foods Analysis, Nollet L.M.L., Toldrá F. (eds). CRC Press Inc. Taylor & Francis Group, USA, pp. 279–290.Search in Google Scholar

Balasubramanian S., Panigrahi S., Logue C.M., Marchello M., Doetkott C., Gu H., Sherwood J., Nolan L.(2004). Spoilage identification of beef using an electronic nose system. Transactions of the ASAE, 47: 1625–1633.Search in Google Scholar

Banerjee P., Lenz D., Robinson J.P., Rickus J.L., Bhunia A.K.(2008). A novel and simple cell-based detection system with a collagen-encapsulated B-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins. Lab. Investig., 88: 196–206.Search in Google Scholar

Basavanna U., Muruvanda T., Brown E.W., Sharma S.K.(2013). Development of a cellbased functional assay for the detection of Clostridium botulinum neurotoxin types A and E. Int. J. Microbiol., http://dx.doi.org/10.1155/2013/593219.10.1155/2013/593219360672723533420Search in Google Scholar

Bhunia A.K.(2012). Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii. BMC Microbiol., 12: 275.Search in Google Scholar

Bratcher C.L., Grant S.A., Vassalli J.T., Lorenzen C.L.(2008a). Enhanced efficiency of a capillary-based biosensor over an optical fiber biosensor for detecting calpastatin. Biosens. Bioelectron., 2: 1674–1679.10.1016/j.bios.2008.01.02718343100Search in Google Scholar

Bratcher C.L., Grant S.A., Vassalli T., Lorenzen C.L.(2008b). Enhanced efficiency of a capillary-based biosensor over an optical fiber biosensor for detecting calpastatin. Biosens. Bioelectron., 23: 429–1434.10.1016/j.bios.2008.01.027Search in Google Scholar

Buła M., Przybylski W., Jaworska D., Kajak-Siemaszko K.(2019). Formation of heterocyclic aromatic amines in relation to pork quality and heat treatment parameters. Food Chem., 276: 511–519.Search in Google Scholar

Cai He.X., Cui P.L., Liu J., Li Z.B., Jia B.J., Zhang T., Wang J.P., Yuan W.Z.(2019). Preparation of a chemiluminescence sensor for multi-detection of benzimidazoles in meat based on molecularly imprinted polymer. Food Chem., 280: 103–109.Search in Google Scholar

Centersfor Disease Controland Prevention(2016). Multistate Outbreak of Shiga toxin-producing Escherichia coli O157:H7 Infections Linked to Beef Products Produced by Adams Farm (Final Update); https://www.cdc.gov/ecoli/2016/o157h7-09-16/index.htmlSearch in Google Scholar

Chauhan N., Narang J., Jain U.(2016). Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly (indole-5-carboxylic acid). J. Exp. Nanosci., 11: 111–122.Search in Google Scholar

Chauhan N., Jain U., Soni S.(2019). Sensors for food quality monitoring. In: Nanoscience for Sustainable Agriculture, Pudake R., Chauhan N., Kole C. (eds.).Springer Nature Switzerland AG 2019, Sensors for Food Quality, https://doi.org/10.1007/978-3-319-97852-9_23.10.1007/978-3-319-97852-9_23Search in Google Scholar

Cháfer-Pericás C., MaquieiraÁ., Puchades R.(2010). Fast screening methods to detect antibiotic residues in food samples. Trends Anal. Chem., 29: 1038–1049.Search in Google Scholar

Che Y., Li Y., Slavik M.(2001). Detection of Campylobacter jejuni in poultry samples using an enzyme-linked immunoassay coupled with an enzyme electrode. Biosens. Bioelectron., 16: 791–797.Search in Google Scholar

Chen D., Yao D., Xie C., Liu D.(2014). Development of an aptasensor for electrochemical detection of tetracycline. Food Control, 42: 109–115.Search in Google Scholar

Chen Y., Qian C., Liu C., Shen H., Wang Z., Ping J., Wu J., Chen H.(2020). Nucleic acid amplification free biosensors for pathogen detection. Biosens. and Bioelectron., 153: 112049.Search in Google Scholar

Choe J.H., Choi Y.M., Lee S.H., Nam Y.J., Jung Y.C., Park H.C., Kim Y.Y., Kim B.C.(2009). The relation of blood glucose level to muscle fiber characteristics and pork quality traits. Meat Sci., 83: 62–67.Search in Google Scholar

Choe J., Choi M., Ryu Y., Go G., Kim B.C.(2015a). Estimation of pork quality traits using exsanguination blood and postmortem muscle metabolites. Asian-Australas. J. Anim. Sci., 28: 862.10.5713/ajas.14.0768441298325925063Search in Google Scholar

Choe J.H.Choi M.H., Ryu Y.C., Lim K-S., Lee E-A., Kang J-H., Hong K.C., Lee S.K., Kim Y.T., Moon S.S., Lee K.W., Rhee M.S., Kim B.C.(2015b). Correlations among various blood parameters at exsanguination and their relationships to pork quality traits. Anim. Prod. Sci., 55: 672–679.10.1071/AN13424Search in Google Scholar

Choi Y.M., Ryu Y.C., Kim B.C.(2007). Influence of myosin heavy and light chain isoforms on early postmortem glycolytic rate and pork quality. Meat Sci., 76: 281–288.Search in Google Scholar

Cinti S., Volpe G., Piermarini S., Delibato E., Palleschi G.(2017). Electrochemical biosensors for rapid detection of foodborne salmonella: A Critical Overview. Sensors (Basel), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579882/10.3390/s17081910557988228820458Search in Google Scholar

Clark L.C.Jr., Lyons C.(1962). Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci., 102: 29–45.Search in Google Scholar

Cock L.S., Arenas A.M.Z., Aponte A.A.(2009). Use of enzymatic biosensors as quality indices: a synopsis of present and future trends in the food industry. Chil. J. Agr. Res., 69: 270–280.Search in Google Scholar

Daszczuk A., Dessalegne Y., Drenth I., Hendriks E., Jo E., Lente T., Oldebesten A., Parrish J., Poljakova W, Purwanto A., Raaphorst R., Boonstra M., Heel A., Herber M., Meulen S., Siebring J., Robin A.R.A., Heinemann M.P., Kuipers O.P, Veening J.W.(2014). Bacillus subtilis biosensor engineered to assess meat spoilage. ACS Synth. Biol., 3: 999−1002.Search in Google Scholar

Dave D., Ghaly A.(2011). Meat spoilage mechanisms and preservation techniques: a critical review. Am. J. Agr. Biol. Sci., 6: 486–510.Search in Google Scholar

European Commission(2005). Commission Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:338:0001:0026:ENSearch in Google Scholar

FAO/WHO(2011). Tackling Antibiotic Resistance from a Food Safety Perspective in Europe. www.euro.who.int/data/assets/pdf_file/0005/136454/e94889Search in Google Scholar

Ferguson J., Baxter A., Young P., Kennedy G., Elliott C., Weigel S., Gatermann R., Ashwin H., Stead S., Sharman M.(2005). Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex® kit chloramphenicol. Anal. Chim. Acta, 529: 109–113.Search in Google Scholar

Fernandez X., Tornberg E.(1991). A review if causes of variation in muscle glycogen content and ultimate pH in pigs. J. Muscle Foods, 2: 209–235.Search in Google Scholar

Ferreira S., De Souza M.B., Trierweiler J.O., Broxtermann O., Folly R.M., Hitzmann B.(2003). Aspects concerning the use of biosensors for process control: experimental and simulation investigations. Comput. Chem. Eng., 27: 1165–1173.Search in Google Scholar

Gao F., Feng S., Chen Z., Li-Chan E.C., Grant E., Lu X.(2014). Detection and quantification of chloramphenicol in milk and honey using molecularly imprinted polymers: Canadian pennybased SERS nanobiosensor. J. Food Sci., 79: 2542–25499.Search in Google Scholar

Geesink G.H., Vander Pale J.G.P., Kent P., Veiseth E., Hemke G., Koohmaraie M.(2005). Quantification of calpastatin using an optical surface plasmon resonance biosensor. Meat Sci., 71: 537–541.Search in Google Scholar

Grant S.A., Stringer R.C., Studer S., Lichlyte D., Lorenzen C.L.(2005). Viability of a FRET dual binding technique to detect calpastatin. Biosens. Bioelectron., 21: 438–444.Search in Google Scholar

Greaser M.L.(2009). Proteins. In: Handbook of Muscle Foods Analysis, Nollet L.M.L., Toldrá F. (eds). CRC Press Taylor & Francis Group, USA, pp. 57–74.Search in Google Scholar

Gregula-Kania M.(2012). Effect of calpastatin gene polymorphism on lamb growth and muscling. Ann. Anim. Sci., 12: 63–72.Search in Google Scholar

Gupta V., Saharan K., Kumar L., Gupta R., Sahai V., Mittal A.(2008). Spectrophotometric ferric ion biosensor from Pseudomonas fluorescens culture. Biotechnol. Bioeng., 100: 284–296.Search in Google Scholar

Haasnoot W., Gerçek H., Cazemier G., Nielen M.W.(2007). Biosensor immunoassay for flumequine in broiler serum and muscle. Anal. Chim. Acta, 586: 312–318.Search in Google Scholar

Hamilton D.N., Miller K.D., Elli M., Mc Keith F.K., Wilson E.R.(2003). Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality. J. Anim. Sci., 81: 2206–2212.Search in Google Scholar

Hargreaves A.B., Barrales L.V., Barrales D.Z., Riveros J.L.F., Peña I.R.(2009). Glycogen determination in bovine muscle: a proposal for rapid determination. Chil. J. Agr. Res., 69: 366–372.Search in Google Scholar

Hernández-Cázares A.S., Aristoy M.C., ToldráF.(2010). Hypoxanthine-based enzymatic sensor for determination of pork meat freshness. Food Chem., 123: 949–954.Search in Google Scholar

Hopkins D.L., Geesink G.H.(2009). Protein degradation post mortem and tenderization. In: Applied Muscle Biology and Meat Science, Du M., McCormick J. R. (eds). CRC Press Inc., Taylor & Francis Group, USA. pp. 149–173.Search in Google Scholar

Hopkins D.L., Thompson J.M.(2001). The relationship between tenderness, proteolysis, muscle contraction and dissociation of actomyosin. Meat Sci., 57: 1–12.Search in Google Scholar

Johnson J., Atkin D., Lee K., Sell M., Chandra S.(2019). Determining meat freshness using electrochemistry: Are we ready for the fast and furious? Meat Sci., 150: 40–46.Search in Google Scholar

Kalač P. (2006). Biologically active polyamines in beef, pork and meat products: a review. Meat Sci., 73: 1–11.Search in Google Scholar

Kim B.S., Kim G.W., Heo N.S., Kim M.S., Yang K.S., Lee S.Y., Park T.J.(2015). Development of a portable biosensor system for pesticide detection on a metal chip surface integrated with wireless communication. Food Sci. Biotechnol., 24: 743–750.Search in Google Scholar

Lee J.H., Han Y.D., Song S.Y., Kim T.D., Yoon H.C.(2010). Biosensor for organophosphorus pesticides based on the acetylcholine esterase inhibition mediated by choline oxidase bioelectrocatalysis. BioChip J., 4: 223–229.Search in Google Scholar

Liang P.S., Park T.S., Yoon J.Y.(2014). Rapid and reagentless detection of microbial contamination within meat utilizing a smartphone-based biosensor. Sci. Rep., 4: 1–7.Search in Google Scholar

Liu X., Zheng S., Hu Y., Li Z., Luo F., He Z.(2016). Electrochemical immunosensor based on the chitosan-magnetic nanoparticles for detection of tetracycline. Food Anal. Methods, 9: 2972–2978.Search in Google Scholar

Luo Y., Alocilja E.C.(2017). Portable nuclear magnetic resonance biosensor and assay for a highly sensitive and rapid detection of foodborne bacteria in complex matrices. J. Biol. Eng., 11: 14.Search in Google Scholar

Manganye P., Desai B., Daka M., Bismilla R.(2018). Listeriosis in the City of Johannesburg, South Africa. S. Afr. J. Public Health, 2: 55–58.Search in Google Scholar

Mc Grath T., Baxter A., Ferguson J., Haughey S., Bjurling P.(2005). Multi sulfonamide screening in porcine muscle using a surface plasmon resonance biosensor. Anal. Chim. Acta, 529: 123–127.Search in Google Scholar

Mendonça M., Conrad N.L., Conceição F., Moreira A.N., de Silva W.P., Aleixo J.A.G., Bhunia A.K.(2012). Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii. BMC Microbiol., 12: 275.Search in Google Scholar

Monin G., Sellier P.(1985). Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: the case of the Hampshire breed. Meat Sci, 13: 49–63.Search in Google Scholar

Morant-Miñana M.C., Elizalde J.(2015). Microscale electrodes integrated on COP for real sample Campylobacter spp. detection. Biosens. Bioelectron., 70: 491–497.Search in Google Scholar

Mungroo N.A., Neethirajan N.(2014). Biosensors for the detection of antibiotics in poultry industry – a review. Biosensors, 4: 472–493.Search in Google Scholar

Narsaiah K., Jha S.N., Bhardwaj R., Sharma R., Kumar R.(2012). Optical biosensors for food quality and safety assurance – a review. J. Food Sci. Technol., 49: 383–406.Search in Google Scholar

Newman J.D., Setford S.J.(2006). Enzymatic biosensors. Mol. Biotechnol., 32: 249–268.Search in Google Scholar

Ohk S.H., Koo O.K., Sen T., Yamamoto C.M., Bhunia A.K.(2010). Antibody aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J. Appl. Microbiol., 109: 808–817.Search in Google Scholar

Otles S., Yalcin B.(2016). Review on the application of nanobiosensors in food analysis. Acta Sci. Pol. Technol. Aliment., 11: 7–18.Search in Google Scholar

Park I.S., Kim N.(2006). Development of a chemiluminescent immunosensor for chloramphenicol. Anal. Chim. Acta, 578: 19–24.Search in Google Scholar

Parra-Bracamonte G.M., Martinez-Gonzalez J.C., Sifuentes-Rincon A.M., Moreno-Medina V.R., Ortega-Rivas E.(2015). Meat tenderness genetic polymorphisms occurrence and distribution in five Zebu breeds in Mexico. Electron. J. Biotechnol., 18: 365–367.Search in Google Scholar

Pauly D., Kirchner S., Stoermann B., Schreiber T., Kaulfuss S., Schade R, Zbinden R., Avonde M.A., Dorner M.B., Dorner B.G.(2009). Simultaneous quantification of five bacterial toxins and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst, 134: 2028–2039.Search in Google Scholar

Przybylski W., Venin P., Monin G.(1994). Relationship between glycolytic potential and ultimate pH in bovine, porcine and ovine muscles. J. Muscle Foods, 5: 245–255.Search in Google Scholar

Przybylski W., Gromadzka-Ostrowska J., Olczak E., Jaworska D., Niemyjski S., Santé-Lhoutellier V.(2009). Analysis of variability of plasma leptin and lipids concentration in relations to glycolytic potential, intramuscular fat and meat quality in P76 pigs. J. Anim. Feed Sci., 18: 296–304.Search in Google Scholar

Przybylski W., Sionek B., Jaworska D., Santé-Lhoutellier V.(2016). The application of biosensors for drip loss analysis and glycolytic potential evaluation. Meat Sci., 117: 7–11.Search in Google Scholar

Rana J.S., Jindal J., Beniwal V., Chhokar V.(2010). Utility biosensors for applications in agriculture – a review. J. Am. Sci., 6: 353–375.Search in Google Scholar

Reder-Christ K., Bendas G.(2011). Biosensor applications in the field of antibiotic researcha review of recent developments. Sensors, 11: 9450–9466.Search in Google Scholar

Shackelfor S.D., Koohmaraie M., Cundiff L.V., Gregory K.E., Rohrer G.A., Savell J.W.(1994). Heritabilities and phenotypic and genetic correlations for bovine postrigor calpastatin activity, intramuscular fat content, Warner-Bratzler shear force, retail product yield, and growth rate. J. Anim. Sci., 72: 857–863.Search in Google Scholar

Sharifi S., Vahed S.Z., Ahmadian E., Dizaj S.M., Eftekhari A., Khalilov R., Ahmadi M., Hamidi-Asl E., Labib M.(2020). Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens. and Bioelectron., 150: 111933.Search in Google Scholar

Singh P.K., Jairath G., Ahlawat S.S., Pathera A., Singh P.(2016). Biosensor: an emerging safety tool for meat industry. J. Food Sci. Technol., 53:1759–1765.Search in Google Scholar

Song M.S., Sekhon SS, Shin W.R., Kim H.C., Ahn J.Y., Kim Y.H.(2017). Detecting and discriminating Shigella sonnei using an aptamer-based fluorescent biosensor platform. Molecules, 22: 825.Search in Google Scholar

Stevens R.C., Soelberg S.D., Eberhart B.L., Spencer S., Wekelld J.C., Chinowsky T.M., Trainer V.L., Furlong C.E.(2007). Detection of the toxin domoic acid from clam extracts using a portable surface plasmon resonance biosensor. Harmful Algae, 6: 166–174.Search in Google Scholar

Sun X., Cao Y., Gong Z., Wang X., Zhang Y., Gao J.(2012). An amperometric immunosensor based on multi-walled carbon nanotubes-thionine-chitosan nanocomposite film for chlorpyrifos detection. Sensors, 12: 17247–17261.Search in Google Scholar

Van Eenennaam A.L., Li J., Thallman R.M., Quaas R.L., Dikeman M.E., Gill C.A., Franke D.E., Thomas M.G.(2007). Validation of commercial DNA tests for quantitative beef quality traits. J. Anim. Sci., 85: 891–900.Search in Google Scholar

Verma N., Kumar S., Kaur H.(2010). Fiber optic biosensor for the detection of Cd in milk. Biosens. Bioelectron., 1:102.Search in Google Scholar

Wang Y., Wang Y., Xu J., Ye C.(2016). Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Shigella. Front. Microbiol., 7: 1834.Search in Google Scholar

Whipple G., Koohmaraie M., Dikeman M.E., Crouse J.D.(1990). Predicting beef-longissimus tenderness from various biochemical and histological muscle traits. J. Anim. Sci., 68: 4193–4199.Search in Google Scholar

Wolter A., Niessner R., Seidel M.(2008). Detection of Escherichia coli O157: H7, Salmonella typhimurium and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Anal. Chem., 80: 5854–5863.Search in Google Scholar

Xiang C., Li R., Adhikari B., She Z., Li Y.(2015). Sensitive electrochemical detection of Salmonella with chitosan-gold nanoparticles composite film. Talanta, 140: 122–127.Search in Google Scholar

Yamada K., Kim Ch., Kim J., Chung J., Lee H.L., Jun S.(2014). Single walled carbon nanotube-based junction biosensor for detection of Escherichia coli. PLOS One, 9: e105767. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.010576710.1371/journal.pone.0105767416940425233366Search in Google Scholar

Yano Y., Kataho N., Mino W., Nakamura T., Asano Y.(1995). Evaluation of beef aging by determination of hypoxanthine and xanthine contents: application of a xanthine sensor. Food Chem., 52: 439–445.Search in Google Scholar

Young O.A., West J., Hart A.L., van Otterdijk F.F.H.(2004). A method for early determination of meat ultimate pH. Meat Sci., 66: 493–498.Search in Google Scholar

Zhang X., Tsuji S., Kitaoka H., Kobayashi H., Tamai M., Honjoh K., Miyamoto T.(2017). Simultaneous detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a very low level using simultaneous enrichment broth and multichannel SPR Biosensor. J. Food Sci., 82: 2357–2363.Search in Google Scholar

Zhao X., Lin C.W., Wang J., Oh D.H.(2014). Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol., 24: 297–312.Search in Google Scholar

Zhou L., Li D.J., Gai L., Wang J.P., Li Y.B.(2012). Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sensor. Actuators B: Chemical, 162: 201–208.Search in Google Scholar

Zór K., Castellarnau M., Pascual D., Pich S., Plasencia C., Bardsley R., Nistor M.(2011). Development and application of a bioelectrochemical detection system for meat tenderness prediction. Biosens. Bioelectron., 26: 4283–4288.Search in Google Scholar

Zybert A., Sieczkowska H., Antosik K., Krzęcio-Nieczyporuk E., Adamczyk G., Koćwin-Podsiadła M.(2016). Relationship between glycolytic potential and meat quality of Duroc pigs with consideration of carcass chilling system. Ann. Anim. Sci., 13: 645–654.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo