Rivista e Edizione

Volume 32 (2023): Edizione 3 (July 2023)

Volume 32 (2023): Edizione 2 (May 2023)

Volume 32 (2023): Edizione 1 (March 2023)

Volume 31 (2022): Edizione 3 (November 2022)

Volume 31 (2022): Edizione 2 (July 2022)

Volume 31 (2022): Edizione 1 (March 2022)

Volume 30 (2021): Edizione 4 (November 2021)

Volume 30 (2021): Edizione 3 (July 2021)

Volume 30 (2021): Edizione 2 (May 2021)

Volume 30 (2021): Edizione 1 (March 2021)

Volume 29 (2020): Edizione 3 (December 2020)

Volume 29 (2020): Edizione 2 (August 2020)

Volume 29 (2020): Edizione 1 (April 2020)

Volume 28 (2019): Edizione 7 (December 2019)

Volume 28 (2019): Edizione 6 (August 2019)

Volume 28 (2019): Edizione 5 (May 2019)

Volume 28 (2018): Edizione 4 (December 2018)

Volume 28 (2018): Edizione 3 (October 2018)

Volume 28 (2018): Edizione 2 (August 2018)

Volume 28 (2018): Edizione 1 (April 2018)

Volume 27 (2017): Edizione 8 (December 2017)

Volume 27 (2017): Edizione 7 (September 2017)

Volume 27 (2017): Edizione 6 (April 2017)

Volume 27 (2017): Edizione 5 (January 2017)

Volume 27 (2016): Edizione 4 (October 2016)

Volume 27 (2016): Edizione 3 (July 2016)

Volume 27 (2016): Edizione 2 (April 2016)

Volume 27 (2016): Edizione 1 (January 2016)

Volume 26 (2015): Edizione 7 (September 2015)

Volume 26 (2015): Edizione 6 (June 2015)

Volume 26 (2015): Edizione 5 (March 2015)

Volume 26 (2015): Edizione 4 (January 2015)

Volume 26 (2014): Edizione 3 (September 2014)

Volume 26 (2014): Edizione 2 (July 2014)

Volume 26 (2014): Edizione 1 (April 2014)

Volume 25 (2013): Edizione 8 (December 2013)

Volume 25 (2013): Edizione 7 (September 2013)

Volume 25 (2013): Edizione 6 (June 2013)

Volume 25 (2013): Edizione 5 (March 2013)

Volume 25 (2012): Edizione 4 (December 2012)

Volume 25 (2012): Edizione 3 (August 2012)

Volume 25 (2012): Edizione 2 (June 2012)

Volume 25 (2012): Edizione 1 (February 2012)

Volume 24 (2011): Edizione 6 (November 2011)

Volume 24 (2011): Edizione 5 (May 2011)

Volume 24 (2011): Edizione 4 (January 2011)

Volume 24 (2010): Edizione 3 (November 2010)

Volume 24 (2010): Edizione 2 (July 2010)

Volume 24 (2010): Edizione 1 (April 2010)

Volume 23 (2009): Edizione 6 (December 2009)

Volume 23 (2009): Edizione 5 (September 2009)

Volume 23 (2009): Edizione 4 (May 2009)

Volume 23 (2008): Edizione 3 (December 2008)

Volume 23 (2008): Edizione 2 (August 2008)

Volume 23 (2008): Edizione 1 (April 2008)

Volume 22 (2007): Edizione 5 (June 2007)

Volume 22 (2007): Edizione 4 (January 2007)

Volume 22 (2006): Edizione 3 (October 2006)

Volume 22 (2006): Edizione 2 (July 2006)

Volume 22 (2006): Edizione 1 (April 2006)

Volume 21 (2005): Edizione 8 (December 2005)

Volume 21 (2005): Edizione 7 (October 2005)

Volume 21 (2005): Edizione 6 (July 2005)

Volume 21 (2005): Edizione 5 (April 2005)

Volume 21 (2004): Edizione 4 (December 2004)

Volume 21 (2004): Edizione 3 (October 2004)

Volume 21 (2004): Edizione 2 (July 2004)

Volume 21 (2004): Edizione 1 (March 2004)

Volume 20 (2003): Edizione 8 (December 2003)

Volume 20 (2003): Edizione 7 (November 2003)

Volume 20 (2003): Edizione 6 (July 2003)

Volume 20 (2003): Edizione 5 (March 2003)

Volume 20 (2002): Edizione 4 (December 2002)

Volume 20 (2002): Edizione 3 (August 2002)

Volume 20 (2002): Edizione 2 (June 2002)

Volume 20 (2002): Edizione 1 (February 2002)

Volume 19 (2001): Edizione 7 (October 2001)

Volume 19 (2001): Edizione 6 (July 2001)

Volume 19 (2001): Edizione 5 (April 2001)

Volume 19 (2001): Edizione 4 (January 2001)

Volume 19 (2000): Edizione 3 (October 2000)

Volume 19 (2000): Edizione 2 (July 2000)

Volume 19 (2000): Edizione 1 (April 2000)

Volume 18 (1999): Edizione 6 (December 1999)

Volume 18 (1999): Edizione 5 (July 1999)

Volume 18 (1999): Edizione 4 (April 1999)

Volume 18 (1998): Edizione 3 (December 1998)

Volume 18 (1998): Edizione 2 (August 1998)

Volume 18 (1998): Edizione 1 (April 1998)

Volume 17 (1997): Edizione 3 (December 1997)

Volume 17 (1997): Edizione 2 (September 1997)

Volume 17 (1996): Edizione 1 (December 1996)

Volume 16 (1995): Edizione 4 (November 1995)

Volume 16 (1995): Edizione 3 (July 1995)

Volume 16 (1994): Edizione 2 (June 1994)

Volume 16 (1994): Edizione 1 (May 1994)

Volume 15 (1992): Edizione 3 (November 1992)

Volume 15 (1992): Edizione 2 (April 1992)

Volume 15 (1991): Edizione 1 (August 1991)

Volume 14 (1990): Edizione 6 (June 1990)

Volume 14 (1989): Edizione 5 (October 1989)

Volume 14 (1989): Edizione 4 (February 1989)

Volume 14 (1989): Edizione 3 (January 1989)

Volume 14 (1988): Edizione 2 (October 1988)

Volume 14 (1987): Edizione 1 (December 1987)

Volume 13 (1986): Edizione 5 (December 1986)

Volume 13 (1986): Edizione 4 (August 1986)

Volume 13 (1986): Edizione 3 (July 1986)

Volume 13 (1985): Edizione 2 (December 1985)

Volume 13 (1985): Edizione 1 (January 1985)

Volume 12 (1984): Edizione 5 (November 1984)

Volume 12 (1984): Edizione 4 (July 1984)

Volume 12 (1984): Edizione 3 (February 1984)

Volume 12 (1983): Edizione 2 (June 1983)

Volume 12 (1983): Edizione 1 (February 1983)

Volume 11 (1982): Edizione 5 (November 1982)

Volume 11 (1982): Edizione 4 (August 1982)

Volume 11 (1982): Edizione 3 (January 1982)

Volume 11 (1981): Edizione 2 (September 1981)

Volume 11 (1981): Edizione 1 (March 1981)

Volume 10 (1980): Edizione 3 (October 1980)

Volume 10 (1980): Edizione 2 (July 1980)

Volume 10 (1979): Edizione 1 (December 1979)

Volume 9 (1978): Edizione 5 (December 1978)

Volume 9 (1978): Edizione 4 (July 1978)

Volume 9 (1977): Edizione 3 (October 1977)

Volume 9 (1977): Edizione 2 (June 1977)

Volume 9 (1977): Edizione 1 (April 1977)

Volume 8 (1976): Edizione 7 (October 1976)

Volume 8 (1976): Edizione 6 (June 1976)

Volume 8 (1976): Edizione 5 (March 1976)

Volume 8 (1975): Edizione 4 (December 1975)

Volume 8 (1975): Edizione 3 (August 1975)

Volume 8 (1975): Edizione 2 (May 1975)

Volume 8 (1975): Edizione 1 (January 1975)

Volume 7 (1974): Edizione 5 (September 1974)

Volume 7 (1974): Edizione 4 (April 1974)

Volume 7 (1973): Edizione 3 (November 1973)

Volume 7 (1973): Edizione 2 (June 1973)

Volume 7 (1973): Edizione 1 (January 1973)

Volume 6 (1972): Edizione 5 (October 1972)

Volume 6 (1972): Edizione 4 (August 1972)

Volume 6 (1972): Edizione 3 (March 1972)

Volume 6 (1971): Edizione 2 (September 1971)

Volume 6 (1971): Edizione 1 (July 1971)

Volume 5 (1970): Edizione 6 (December 1970)

Volume 5 (1970): Edizione 5 (November 1970)

Volume 5 (1970): Edizione 4 (August 1970)

Volume 5 (1969): Edizione 3 (December 1969)

Volume 5 (1969): Edizione 2 (August 1969)

Volume 5 (1969): Edizione 1 (June 1969)

Volume 4 (1968): Edizione 7 (December 1968)

Volume 4 (1968): Edizione 6 (November 1968)

Volume 4 (1968): Edizione 5 (July 1968)

Volume 4 (1968): Edizione 4 (May 1968)

Volume 4 (1968): Edizione 3 (February 1968)

Volume 4 (1967): Edizione 2 (October 1967)

Volume 4 (1967): Edizione 1 (August 1967)

Volume 3 (1966): Edizione 9 (December 1966)

Volume 3 (1966): Edizione 8 (December 1966)

Volume 3 (1966): Edizione 7 (November 1966)

Volume 3 (1966): Edizione 6 (September 1966)

Volume 3 (1966): Edizione 5 (May 1966)

Volume 3 (1965): Edizione 4 (October 1965)

Volume 3 (1965): Edizione 3 (August 1965)

Volume 3 (1965): Edizione 2 (May 1965)

Volume 3 (1965): Edizione 1 (April 1965)

Volume 2 (1964): Edizione 7 (November 1964)

Volume 2 (1964): Edizione 6 (October 1964)

Volume 2 (1964): Edizione 5 (May 1964)

Volume 2 (1964): Edizione 4 (February 1964)

Volume 2 (1963): Edizione 3 (October 1963)

Volume 2 (1963): Edizione 2 (June 1963)

Volume 2 (1963): Edizione 1 (March 1963)

Volume 1 (1962): Edizione 10 (December 1962)

Volume 1 (1962): Edizione 9 (December 1962)

Volume 1 (1962): Edizione 8 (November 1962)

Volume 1 (1962): Edizione 7 (November 1962)

Volume 1 (1962): Edizione 6 (July 1962)

Volume 1 (1962): Edizione 5 (February 1962)

Volume 1 (1961): Edizione 4 (November 1961)

Volume 1 (1961): Edizione 3 (August 1961)

Volume 1 (1961): Edizione 2 (May 1961)

Volume 1 (1961): Edizione 1 (January 1961)

Dettagli della rivista
Formato
Rivista
eISSN
2719-9509
Pubblicato per la prima volta
01 Jan 1992
Periodo di pubblicazione
4 volte all'anno
Lingue
Inglese

Cerca

Volume 20 (2003): Edizione 7 (November 2003)

Dettagli della rivista
Formato
Rivista
eISSN
2719-9509
Pubblicato per la prima volta
01 Jan 1992
Periodo di pubblicazione
4 volte all'anno
Lingue
Inglese

Cerca

0 Articoli
Accesso libero

Formation and Reduction of Carbon Monoxide

Pubblicato online: 30 Dec 2014
Pagine: 439 - 447

Astratto

Abstract

The total amounts of carbon monoxide (CO) and carbon dioxide (CO2) in the mainstream smoke of a burning cigarette during a steady draw were measured by a non-dispersive infrared (IR) technique for a variety of flow rates. The temperature profiles in the cigarette were also measured under the same flow conditions. The data were used in a diffusion model to estimate the concentrations of these gases downstream of the pyrolysis zone. The contribution of pyrolysis in the generation of these gases was calculated using a kinetic model. The remaining CO and CO2 are attributed to processes occurring in the combustion zone. The calculated mean concentrations of carbon oxides behind the pyrolysis zone are in reasonable agreement with the experimental data. The contributions of pyrolysis and combustion to the formation of CO were found to be approximately 1/3 and 2/3 respectively. The results show that the peak temperature rises with an increase in the mainstream flow rate in the limited range of 0 to 200 mL/min. As a result, the concentrations of carbon oxides behind the pyrolysis zone also increase with the flow rate and reach plateaus at higher flow rates.

Accesso libero

Mainstream Smoke Chemical Analyses for 2R4F Kentucky Reference Cigarette

Pubblicato online: 30 Dec 2014
Pagine: 448 - 458

Astratto

Abstract

A new reference cigarette, 2R4F, has been designed to replace the 1R4F Kentucky reference cigarette. This new cigarette has virtually the same blend composition as the 1R4F cigarette. However, the 1R4F cigarette was made in 1983 and the variation in the tobacco from crop year to crop year as well as the difference in the age of the two cigarettes were expected to generate differences in the smoke chemistry. A study done for the quantitation of more than 44 analytes in smoke, including most compounds considered as biologically active, is presented in this report. The analyses were performed by six independent laboratories using a variety of analytical techniques. The smoking was performed using International Standard (ISO) recommendations. The results showed only small differences between the two cigarettes regarding ‘tar', nicotine and carbon monoxide (CO), as well as for aminonaphthalenes, resorcinol, and some aldehydes. Although the two reference cigarettes were made as close as possible, the concentrations of a significant number of analytes in the smoke differed between 10% to 30%. Specific trace compounds in the blend such as metals and tobacco specific nitrosamines (TSNA), which may influence the smoke composition, were also different between the two cigarettes. The level of lead, in particular, was very different in tobacco between 1983 and 2002.

Accesso libero

Changes in Levels of Amino Acids and Basic Components in Burley Tobacco Produced by Roasting

Pubblicato online: 30 Dec 2014
Pagine: 459 - 466

Astratto

Abstract

Three burley tobacco samples from three different areas in China and Brazil were roasted under three processing conditions. The amino acids and basic components of the burley tobacco samples were determined before and after roasting. Routine tobacco variables (reducing sugars, total water-soluble sugars, total nitrogen, total alkaloids, total volatile bases, and pH) were determined according to the Chinese National Standard Methods (CNSM). Free amino acids were determined by high performance liquid chromatography (HPLC). The basic compounds were isolated by use of simultaneous distillation and extraction (SDE) equipment. Their levels were determined qualitatively and quantitatively on a) a gas chromatograph (GC) equipped with a nitrogen-phosphorus detector (NPD) and b) by gas chromatography mass spectrometry (GC-MS). The results indicated that the chemical changes occurring during roasting have a significant impact on burley tobacco quality. Roasting decreased the tobacco pH value and the levels of total nitrogen, reducing sugars, free amino acids, and other nitrogenous substances, such as amines and alkaloids. The latter are usually related to the irritancy and sharp taste of burley tobacco smoke. In contrast, the levels of pyrazines, important contributors to the characteristic burley flavor, increased.

Accesso libero

Role of Oxides of Nitrogen in Tobacco-Specific Nitrosamine Formation in Flue-Cured Tobacco

Pubblicato online: 30 Dec 2014
Pagine: 467 - 475

Astratto

Abstract

Tobacco is known to contain a class of nitrosamines known as tobacco-specific nitrosamines or TSNA. Nitrosation of naturally occurring tobacco alkaloids is commonly accepted as the mechanism of TSNA formation in tobacco. Because green and freshly harvested tobaccos are virtually free of TSNA, formation and accumulation of TSNA are generally considered to occur during the curing process. Most recent hypotheses have focused on microbial reduction of nitrate to nitrite and other oxides of nitrogen (NOcompounds) that react with tobacco alkaloids to form TSNA during curing. This natural microbial process remains the prevalent hypothesis for TSNA formation in burley and other air-cured tobaccos. However, a different mechanism for the formation of TSNA in flue-cured tobacco, independent of microbial activity, is documented in this paper. It is common practice to flue-cure Virginia or blonde tobacco in bulk barns that incorporate forced air ventilation and temperature control. For the last thirty-five years, many modern bulk barns in North America generally have used liquid propane gas (LPG) with direct-fired burners that exhaust combustion gases directly into the barn where the tobacco is exposed to those gases. Our studies indicate that LPG combustion by-products in the exhaust stream, namely NO, react with naturally occurring tobacco alkaloids to form TSNA. Heat exchange curing methods preclude exposure of the tobacco to combustion gases and by-products, thereby eliminating this significant source of TSNA formation, without degrading leaf quality or smoking character. Research findings from 1998 and 1999 are presented to demonstrate the role of NOgases in TSNA formation and the significance of direct-fired curing as a primary source of TSNA formation in flue-cured tobacco. Also, data from an extensive barn conversion program in 2000, which resulted in a 94% average reduction in TSNA levels in cured flue-cured leaf, are presented.

Accesso libero

Cigarette Mouth Insertion Depths Among Chinese Smokers

Pubblicato online: 30 Dec 2014
Pagine: 476 - 480

Astratto

Abstract

Vent blocking - where filter ventilation holes are intentionally or unintentionally, partly or completely covered by smokers’ lips during smoking - is an aspect of smoking behavior which can alter mainstream smoke yields. This study was designed to determine if, and to what extent ventilation holes were blocked by smokers’ lips in two cohorts of Chinese smokers. In this study, two groups of samples were collected. One group (1742 butts) was collected randomly from public places in six chosen cities. Another (1037 butts) was obtained by collecting the butts from identified smokers in Kunming. In this paper, the mouth insertion depth among Chinese smokers was studied for the first time by a staining method employing ninhydrin in ethanol. The results indicate that Chinese smokers exhibit a mouth insertion depth ranging from 1 to 17 mm with an average value of 7.5 AA± 2 mm. In this study, 95% of the ventilated filters examined showed that the vent zone was neither completely nor partially covered by smokers’ lips.

0 Articoli
Accesso libero

Formation and Reduction of Carbon Monoxide

Pubblicato online: 30 Dec 2014
Pagine: 439 - 447

Astratto

Abstract

The total amounts of carbon monoxide (CO) and carbon dioxide (CO2) in the mainstream smoke of a burning cigarette during a steady draw were measured by a non-dispersive infrared (IR) technique for a variety of flow rates. The temperature profiles in the cigarette were also measured under the same flow conditions. The data were used in a diffusion model to estimate the concentrations of these gases downstream of the pyrolysis zone. The contribution of pyrolysis in the generation of these gases was calculated using a kinetic model. The remaining CO and CO2 are attributed to processes occurring in the combustion zone. The calculated mean concentrations of carbon oxides behind the pyrolysis zone are in reasonable agreement with the experimental data. The contributions of pyrolysis and combustion to the formation of CO were found to be approximately 1/3 and 2/3 respectively. The results show that the peak temperature rises with an increase in the mainstream flow rate in the limited range of 0 to 200 mL/min. As a result, the concentrations of carbon oxides behind the pyrolysis zone also increase with the flow rate and reach plateaus at higher flow rates.

Accesso libero

Mainstream Smoke Chemical Analyses for 2R4F Kentucky Reference Cigarette

Pubblicato online: 30 Dec 2014
Pagine: 448 - 458

Astratto

Abstract

A new reference cigarette, 2R4F, has been designed to replace the 1R4F Kentucky reference cigarette. This new cigarette has virtually the same blend composition as the 1R4F cigarette. However, the 1R4F cigarette was made in 1983 and the variation in the tobacco from crop year to crop year as well as the difference in the age of the two cigarettes were expected to generate differences in the smoke chemistry. A study done for the quantitation of more than 44 analytes in smoke, including most compounds considered as biologically active, is presented in this report. The analyses were performed by six independent laboratories using a variety of analytical techniques. The smoking was performed using International Standard (ISO) recommendations. The results showed only small differences between the two cigarettes regarding ‘tar', nicotine and carbon monoxide (CO), as well as for aminonaphthalenes, resorcinol, and some aldehydes. Although the two reference cigarettes were made as close as possible, the concentrations of a significant number of analytes in the smoke differed between 10% to 30%. Specific trace compounds in the blend such as metals and tobacco specific nitrosamines (TSNA), which may influence the smoke composition, were also different between the two cigarettes. The level of lead, in particular, was very different in tobacco between 1983 and 2002.

Accesso libero

Changes in Levels of Amino Acids and Basic Components in Burley Tobacco Produced by Roasting

Pubblicato online: 30 Dec 2014
Pagine: 459 - 466

Astratto

Abstract

Three burley tobacco samples from three different areas in China and Brazil were roasted under three processing conditions. The amino acids and basic components of the burley tobacco samples were determined before and after roasting. Routine tobacco variables (reducing sugars, total water-soluble sugars, total nitrogen, total alkaloids, total volatile bases, and pH) were determined according to the Chinese National Standard Methods (CNSM). Free amino acids were determined by high performance liquid chromatography (HPLC). The basic compounds were isolated by use of simultaneous distillation and extraction (SDE) equipment. Their levels were determined qualitatively and quantitatively on a) a gas chromatograph (GC) equipped with a nitrogen-phosphorus detector (NPD) and b) by gas chromatography mass spectrometry (GC-MS). The results indicated that the chemical changes occurring during roasting have a significant impact on burley tobacco quality. Roasting decreased the tobacco pH value and the levels of total nitrogen, reducing sugars, free amino acids, and other nitrogenous substances, such as amines and alkaloids. The latter are usually related to the irritancy and sharp taste of burley tobacco smoke. In contrast, the levels of pyrazines, important contributors to the characteristic burley flavor, increased.

Accesso libero

Role of Oxides of Nitrogen in Tobacco-Specific Nitrosamine Formation in Flue-Cured Tobacco

Pubblicato online: 30 Dec 2014
Pagine: 467 - 475

Astratto

Abstract

Tobacco is known to contain a class of nitrosamines known as tobacco-specific nitrosamines or TSNA. Nitrosation of naturally occurring tobacco alkaloids is commonly accepted as the mechanism of TSNA formation in tobacco. Because green and freshly harvested tobaccos are virtually free of TSNA, formation and accumulation of TSNA are generally considered to occur during the curing process. Most recent hypotheses have focused on microbial reduction of nitrate to nitrite and other oxides of nitrogen (NOcompounds) that react with tobacco alkaloids to form TSNA during curing. This natural microbial process remains the prevalent hypothesis for TSNA formation in burley and other air-cured tobaccos. However, a different mechanism for the formation of TSNA in flue-cured tobacco, independent of microbial activity, is documented in this paper. It is common practice to flue-cure Virginia or blonde tobacco in bulk barns that incorporate forced air ventilation and temperature control. For the last thirty-five years, many modern bulk barns in North America generally have used liquid propane gas (LPG) with direct-fired burners that exhaust combustion gases directly into the barn where the tobacco is exposed to those gases. Our studies indicate that LPG combustion by-products in the exhaust stream, namely NO, react with naturally occurring tobacco alkaloids to form TSNA. Heat exchange curing methods preclude exposure of the tobacco to combustion gases and by-products, thereby eliminating this significant source of TSNA formation, without degrading leaf quality or smoking character. Research findings from 1998 and 1999 are presented to demonstrate the role of NOgases in TSNA formation and the significance of direct-fired curing as a primary source of TSNA formation in flue-cured tobacco. Also, data from an extensive barn conversion program in 2000, which resulted in a 94% average reduction in TSNA levels in cured flue-cured leaf, are presented.

Accesso libero

Cigarette Mouth Insertion Depths Among Chinese Smokers

Pubblicato online: 30 Dec 2014
Pagine: 476 - 480

Astratto

Abstract

Vent blocking - where filter ventilation holes are intentionally or unintentionally, partly or completely covered by smokers’ lips during smoking - is an aspect of smoking behavior which can alter mainstream smoke yields. This study was designed to determine if, and to what extent ventilation holes were blocked by smokers’ lips in two cohorts of Chinese smokers. In this study, two groups of samples were collected. One group (1742 butts) was collected randomly from public places in six chosen cities. Another (1037 butts) was obtained by collecting the butts from identified smokers in Kunming. In this paper, the mouth insertion depth among Chinese smokers was studied for the first time by a staining method employing ninhydrin in ethanol. The results indicate that Chinese smokers exhibit a mouth insertion depth ranging from 1 to 17 mm with an average value of 7.5 AA± 2 mm. In this study, 95% of the ventilated filters examined showed that the vent zone was neither completely nor partially covered by smokers’ lips.