Journal & Issues

Volume 23 (2023): Issue 1 (March 2023)

Volume 22 (2022): Issue 4 (December 2022)

Volume 22 (2022): Issue 3 (September 2022)

Volume 22 (2022): Issue 2 (June 2022)

Volume 22 (2022): Issue 1 (March 2022)

Volume 21 (2021): Issue 4 (December 2021)

Volume 21 (2021): Issue 3 (September 2021)

Volume 21 (2021): Issue 2 (June 2021)

Volume 21 (2021): Issue 1 (March 2021)

Volume 20 (2020): Issue 4 (December 2020)

Volume 20 (2020): Issue 3 (September 2020)

Volume 20 (2020): Issue 2 (June 2020)

Volume 20 (2020): Issue 1 (March 2020)

Volume 19 (2019): Issue 4 (December 2019)

Volume 19 (2019): Issue 3 (September 2019)

Volume 19 (2019): Issue 2 (June 2019)

Volume 19 (2019): Issue 1 (March 2019)

Volume 18 (2018): Issue 4 (December 2018)

Volume 18 (2018): Issue 3 (September 2018)

Volume 18 (2018): Issue 2 (June 2018)

Volume 18 (2018): Issue 1 (March 2018)

Volume 17 (2017): Issue 4 (December 2017)

Volume 17 (2017): Issue 3 (September 2017)

Volume 17 (2017): Issue 2 (June 2017)

Volume 17 (2017): Issue 1 (March 2017)

Volume 16 (2016): Issue 4 (December 2016)

Volume 16 (2016): Issue 3 (September 2016)

Volume 16 (2016): Issue 2 (June 2016)

Volume 16 (2016): Issue 1 (March 2016)

Volume 15 (2015): Issue 4 (December 2015)

Volume 15 (2015): Issue 3 (September 2015)

Volume 15 (2015): Issue 2 (June 2015)

Volume 15 (2015): Issue 1 (March 2015)

Volume 14 (2014): Issue 4 (December 2014)

Volume 14 (2014): Issue 3 (September 2014)

Volume 14 (2014): Issue 2 (June 2014)

Volume 14 (2014): Issue 1 (March 2014)

Volume 13 (2013): Issue 4 (December 2013)

Volume 13 (2013): Issue 3 (September 2013)

Volume 13 (2013): Issue 2 (June 2013)

Volume 13 (2013): Issue 1 (March 2013)

Volume 12 (2012): Issue 4 (December 2012)

Volume 12 (2012): Issue 3 (October 2012)

Volume 12 (2012): Issue 2 (June 2012)

Volume 12 (2012): Issue 1 (March 2012)

Volume 11 (2011): Issue 4 (December 2011)

Volume 11 (2011): Issue 3 (September 2011)

Volume 11 (2011): Issue 2 (June 2011)

Volume 11 (2011): Issue 1 (March 2011)

Volume 10 (2010): Issue 4 (December 2010)

Volume 10 (2010): Issue 3 (September 2010)

Volume 10 (2010): Issue 2 (June 2010)

Volume 10 (2010): Issue 1 (March 2010)

Volume 9 (2009): Issue 4 (December 2009)

Volume 9 (2009): Issue 3 (September 2009)

Volume 9 (2009): Issue 2 (June 2009)

Volume 9 (2009): Issue 1 (March 2009)

Volume 8 (2008): Issue 4 (December 2008)

Volume 8 (2008): Issue 3 (September 2008)

Volume 8 (2008): Issue 2 (June 2008)

Volume 8 (2008): Issue 1 (March 2008)

Journal Details
Format
Journal
eISSN
2083-4799
First Published
23 Sep 2008
Publication timeframe
4 times per year
Languages
English

Search

Volume 19 (2019): Issue 3 (September 2019)

Journal Details
Format
Journal
eISSN
2083-4799
First Published
23 Sep 2008
Publication timeframe
4 times per year
Languages
English

Search

5 Articles
Open Access

Effect of Black Liquor from Date Palm on the Workability and Compressive Strength of Portland Cement and Concrete

Published Online: 11 Oct 2019
Page range: 5 - 18

Abstract

Abstract

Lignin is the second most abundant natural polymer. Due to the high content of carbon and hydrogen (C-H, C-C, C=O), it can be used as a potential dispersant for cement matrix. The objective of this study is to extract lignin from date palm and study its effect in the form of black liquor (BL) on the rheological and physic-mechanical properties of the cements and concrete. The lignin in black liquor form represents approximately 30 wt% dry weight of date palm. It is a heteropolymer composed primarily of methoxylated phenylpropylene alcohol monomeric units interconnected by a variety of stable carbon-carbon and carbon-oxygen-carbon (ether and esters) linkages. The results found show the positive effect on the workability of cement and concrete and confirms its dispersion effect by improving compressive strength of concrete during the early and the later ages of hydration.

Keywords

  • black liquor (BL)
  • date palm
  • cement
  • rheological properties
  • compressive strength
Open Access

Impact Tests of UHSS Steel Welded Joints Using the Drop - Tower Impact Drop Method

Published Online: 11 Oct 2019
Page range: 19 - 31

Abstract

Abstract

The article characterizes the impact test method using Drop-Tower Impact Test with the registration of the value of force and energy of breaking. Based on sources, the possibilities and scope of the current application of this method were determined and the current state of knowledge on the results of these tests was reviewed. In order to determine the possibility of using the method in impact tests of high strength steel joints, investigations of hybrid PTA - GMA welding conditions on impact strength of joints of MART S1300QL steel were carried out. In particular, the influence of t8/5 cooling time on the impact strength of welded joints by the Drop - Tower Impact Test method was determined. It has been shown that the use of dropping machine with computer-based registration of breaking force and energy values was possible in the case of impact strength testing of UHSS welded joints and enabled precise analysis of the energy distribution dynamics absorbed by the tested.

Keywords

  • Ultra High-Strength Steels
  • UHSS
  • impact strength
  • Dynatup
  • Drop-Tower Impact Test
  • Weldox 1300
Open Access

Synthesis, Characterization and Some Biological Properties of PVA/PVP/PN Hydrogel Nanocomposites: Antibacterial and Biocompatibility

Published Online: 11 Oct 2019
Page range: 32 - 45

Abstract

Abstract

In this study, it was aimed to synthesize hydrogel based antibacterial, biocompatible and non-toxic wound dressing materials by solvent removal method usingpoly(vinylalcohol) (PVA), poly(vinylpyrolidone) (PVP) and nano pomegranate seed (PN).The morphology, swelling capacity, contact angle, antibacterial activity, biocompatibility and cytotoxicity of the synthesized films were determined. From the experimental findings, it was found that the PN particles were nano-sized, showed homogeneous and spherical distribution and improved the hydrophobic properties of the materials obtained by the addition of PN. And also, their swelling capacities were decreased with increased PN amount and all of the materials showed similar antibacterial activity, hemocompatibility and cytotoxicity.

Keywords

  • Pomegranate seed
  • hydrogel nanocomposite
  • wound dressing material
  • antibacterial activity
Open Access

Single Step Solid-State Synthesis of Lanthanum Molybdate

Published Online: 11 Oct 2019
Page range: 46 - 54

Abstract

Abstract

In this study, LaxMoyOz powders were synthesized by a cost-effective solid-state synthesis method. Four different heating cycles were designed to investigate the effects of synthesis temperature and holding time on lanthanum molybdate (LMO) formation, phase assemblies, particle size and morphology. X-Ray Diffraction (XRD) and scanning electron microscopy (SEM) studies were performed to observe crystal structure and particle morphology of synthesized powders. The results showed that nearly ninety percent β - La2Mo2O9 (43,3 nm crystal size) phase was obtained at 1000 °C for 6 h holding time. Longer holding times at 1000 °C favor more oxygen-rich compounds which cause recrystallization of various new crystalline phases. The grain size of the synthesized powder was increased from 0,2 µm to 1,5 µm with increasing holding time. In summary, it is possible to manufacture LMO powders rich in β - La2Mo2O9 by one - step solid - state synthesis method. The phase assembles and particle size of LMO powders could also be tailored by optimization of heat treatment cycle.

Keywords

  • heat treatment
  • lanthanum molybdate
  • phase assembly
  • solid state synthesis
Open Access

Orbital TIG Welding of Titanium Tubes with Perforated Bottom Made of Titanium-Clad Steel

Published Online: 11 Oct 2019
Page range: 55 - 64

Abstract

Abstract

The article presents problems accompanying the industrial TIG welding (142) of a heat exchanger perforated bottom made of steel clad with titanium B265 grade 1 with tubes made of titanium B338 grade 2. Research-related tests involved the making of test plates containing simulated imperfections formed during orbital welding. The above-named imperfections resulted from insufficient gas shielding during the welding process, the improper positioning of the tungsten electrode (excessively large or overly small circumference, around which the orbital welding process was performed), an excessive electrode travel rate being the consequence of an improperly set welding programme as well as excessively high welding current. Initial tests enabled the development of the orbital TIG welding of titanium tubes with the perforated bottom made of titanium-clad steel, satisfying acceptance criteria applied during commissioning.

Keywords

  • orbital welding
  • TIG
  • perforated bottom
  • titanium
  • clad steel
5 Articles
Open Access

Effect of Black Liquor from Date Palm on the Workability and Compressive Strength of Portland Cement and Concrete

Published Online: 11 Oct 2019
Page range: 5 - 18

Abstract

Abstract

Lignin is the second most abundant natural polymer. Due to the high content of carbon and hydrogen (C-H, C-C, C=O), it can be used as a potential dispersant for cement matrix. The objective of this study is to extract lignin from date palm and study its effect in the form of black liquor (BL) on the rheological and physic-mechanical properties of the cements and concrete. The lignin in black liquor form represents approximately 30 wt% dry weight of date palm. It is a heteropolymer composed primarily of methoxylated phenylpropylene alcohol monomeric units interconnected by a variety of stable carbon-carbon and carbon-oxygen-carbon (ether and esters) linkages. The results found show the positive effect on the workability of cement and concrete and confirms its dispersion effect by improving compressive strength of concrete during the early and the later ages of hydration.

Keywords

  • black liquor (BL)
  • date palm
  • cement
  • rheological properties
  • compressive strength
Open Access

Impact Tests of UHSS Steel Welded Joints Using the Drop - Tower Impact Drop Method

Published Online: 11 Oct 2019
Page range: 19 - 31

Abstract

Abstract

The article characterizes the impact test method using Drop-Tower Impact Test with the registration of the value of force and energy of breaking. Based on sources, the possibilities and scope of the current application of this method were determined and the current state of knowledge on the results of these tests was reviewed. In order to determine the possibility of using the method in impact tests of high strength steel joints, investigations of hybrid PTA - GMA welding conditions on impact strength of joints of MART S1300QL steel were carried out. In particular, the influence of t8/5 cooling time on the impact strength of welded joints by the Drop - Tower Impact Test method was determined. It has been shown that the use of dropping machine with computer-based registration of breaking force and energy values was possible in the case of impact strength testing of UHSS welded joints and enabled precise analysis of the energy distribution dynamics absorbed by the tested.

Keywords

  • Ultra High-Strength Steels
  • UHSS
  • impact strength
  • Dynatup
  • Drop-Tower Impact Test
  • Weldox 1300
Open Access

Synthesis, Characterization and Some Biological Properties of PVA/PVP/PN Hydrogel Nanocomposites: Antibacterial and Biocompatibility

Published Online: 11 Oct 2019
Page range: 32 - 45

Abstract

Abstract

In this study, it was aimed to synthesize hydrogel based antibacterial, biocompatible and non-toxic wound dressing materials by solvent removal method usingpoly(vinylalcohol) (PVA), poly(vinylpyrolidone) (PVP) and nano pomegranate seed (PN).The morphology, swelling capacity, contact angle, antibacterial activity, biocompatibility and cytotoxicity of the synthesized films were determined. From the experimental findings, it was found that the PN particles were nano-sized, showed homogeneous and spherical distribution and improved the hydrophobic properties of the materials obtained by the addition of PN. And also, their swelling capacities were decreased with increased PN amount and all of the materials showed similar antibacterial activity, hemocompatibility and cytotoxicity.

Keywords

  • Pomegranate seed
  • hydrogel nanocomposite
  • wound dressing material
  • antibacterial activity
Open Access

Single Step Solid-State Synthesis of Lanthanum Molybdate

Published Online: 11 Oct 2019
Page range: 46 - 54

Abstract

Abstract

In this study, LaxMoyOz powders were synthesized by a cost-effective solid-state synthesis method. Four different heating cycles were designed to investigate the effects of synthesis temperature and holding time on lanthanum molybdate (LMO) formation, phase assemblies, particle size and morphology. X-Ray Diffraction (XRD) and scanning electron microscopy (SEM) studies were performed to observe crystal structure and particle morphology of synthesized powders. The results showed that nearly ninety percent β - La2Mo2O9 (43,3 nm crystal size) phase was obtained at 1000 °C for 6 h holding time. Longer holding times at 1000 °C favor more oxygen-rich compounds which cause recrystallization of various new crystalline phases. The grain size of the synthesized powder was increased from 0,2 µm to 1,5 µm with increasing holding time. In summary, it is possible to manufacture LMO powders rich in β - La2Mo2O9 by one - step solid - state synthesis method. The phase assembles and particle size of LMO powders could also be tailored by optimization of heat treatment cycle.

Keywords

  • heat treatment
  • lanthanum molybdate
  • phase assembly
  • solid state synthesis
Open Access

Orbital TIG Welding of Titanium Tubes with Perforated Bottom Made of Titanium-Clad Steel

Published Online: 11 Oct 2019
Page range: 55 - 64

Abstract

Abstract

The article presents problems accompanying the industrial TIG welding (142) of a heat exchanger perforated bottom made of steel clad with titanium B265 grade 1 with tubes made of titanium B338 grade 2. Research-related tests involved the making of test plates containing simulated imperfections formed during orbital welding. The above-named imperfections resulted from insufficient gas shielding during the welding process, the improper positioning of the tungsten electrode (excessively large or overly small circumference, around which the orbital welding process was performed), an excessive electrode travel rate being the consequence of an improperly set welding programme as well as excessively high welding current. Initial tests enabled the development of the orbital TIG welding of titanium tubes with the perforated bottom made of titanium-clad steel, satisfying acceptance criteria applied during commissioning.

Keywords

  • orbital welding
  • TIG
  • perforated bottom
  • titanium
  • clad steel