There is a problem in obtaining a suitable impact strength of the padding weld after cladding with a martensitic filler metal. Too low annealing temperature below 580°C and the excessive annealing temperature above 650°C do not provide adequate impact strength of the padding weld. A heat treatment technology for mixed joints has been developed based on the results of the microscopic observations, X-ray diffraction measurements and transmission electron microscope examination. The problem was identified and a special technology of heat treatment for the dissimilar joint was elaborated. This technology provides a high impact resistance of the padding weld and an appropriate properties of the base material.
The article presents the analysis of methods for selecting dimensions of bone wedge for high tibial osteotomy. The existing methods are described along with the procedure. In the following paragraphs, deficiencies in the selection of bone wedge dimensions and global trends in this field have been demonstrated. Based on the numerical analysis, the problem appearing in the wrong choice of bone wedge dimensions was illustrated.
The degradation of materials due to slurry erosion is the serious problem which occurs in the power industries. The paper presents actual knowledge about an influence of individual factors connected with flow conditions, particles and material properties on the slurry erosion resistance. Among the factors connected with operating conditions, an influence of impact angle, and velocity of impact, particle concertation and liquid temperature have been described. In case of the factors connected with solid particle properties, an influence of the size, shape and hardness have been discussed. In the part devoted to the impact of material properties, due to different types of materials, the issues of resistance to erosion of slurries related to the properties of steel, ceramics and polymers are discussed separately. In the paper has been shown that a change of any of mentioned factors causes a change in the erosion rate due to the synergistic effects that accompany to slurry degradation.
The investigations of high-temperature oxidation of zirconium alloys, applied for fuel pellets in nuclear power plants, are usually limited to oxidation kinetics, phase transformations and microstructural characterization. The purpose of this research was to characterize the degradation phenomena occurring within oxide layer and at the interface oxide/metal, on internal and external Zircaloy-2 tube surfaces, below and over crystalline transformation temperature of zirconium oxides. The commercial tubes were oxidized at 1273 K and 1373 K in calm air for 30 min and then examined with a technique novel for such purpose, namely a high-resolution X-ray computer tomography. The light microscopy was used to examine the cross-surfaces. The obtained results show that the form and intensity of oxide damage is significant and it is in a complicated way related to oxidation temperature and on whether external or internal tube surface is studied. The found oxide layer damage forms include surface cracks, the detachment of oxide layers, the appearance of voids, and nodular corrosion. The oxidation effects and damage appearance are discussed taking into account the processes such as formation of oxides, their phase transformation, stress-enhanced formation and propagation of cracks, diffusion of vacancies, formation of nitrides, diffusion of hydrogen into interface oxide-metal, incubation of cracks on second phase precipitates are taken into account to explain the observed phenomena.
Measurements of Residual Magnetic Field RMF (the tangential component parallel to the load direction) were taken on the surface of P91 steel plate samples (X10CrMoVNb9-1) subjected to periodic pulsating tensile cyclic loads with the use of flux-gate and magneto impedance sensors, and preliminary measurement results are compiled and analyzed. The study investigates how the microstructure and load cycle parameters affect the RMF changes due to stress variations. Each combination of parameters: microstructure and load cycle corresponds to the characteristic variability pattern of magnetization and its maximum and minimum values.
There is a problem in obtaining a suitable impact strength of the padding weld after cladding with a martensitic filler metal. Too low annealing temperature below 580°C and the excessive annealing temperature above 650°C do not provide adequate impact strength of the padding weld. A heat treatment technology for mixed joints has been developed based on the results of the microscopic observations, X-ray diffraction measurements and transmission electron microscope examination. The problem was identified and a special technology of heat treatment for the dissimilar joint was elaborated. This technology provides a high impact resistance of the padding weld and an appropriate properties of the base material.
The article presents the analysis of methods for selecting dimensions of bone wedge for high tibial osteotomy. The existing methods are described along with the procedure. In the following paragraphs, deficiencies in the selection of bone wedge dimensions and global trends in this field have been demonstrated. Based on the numerical analysis, the problem appearing in the wrong choice of bone wedge dimensions was illustrated.
The degradation of materials due to slurry erosion is the serious problem which occurs in the power industries. The paper presents actual knowledge about an influence of individual factors connected with flow conditions, particles and material properties on the slurry erosion resistance. Among the factors connected with operating conditions, an influence of impact angle, and velocity of impact, particle concertation and liquid temperature have been described. In case of the factors connected with solid particle properties, an influence of the size, shape and hardness have been discussed. In the part devoted to the impact of material properties, due to different types of materials, the issues of resistance to erosion of slurries related to the properties of steel, ceramics and polymers are discussed separately. In the paper has been shown that a change of any of mentioned factors causes a change in the erosion rate due to the synergistic effects that accompany to slurry degradation.
The investigations of high-temperature oxidation of zirconium alloys, applied for fuel pellets in nuclear power plants, are usually limited to oxidation kinetics, phase transformations and microstructural characterization. The purpose of this research was to characterize the degradation phenomena occurring within oxide layer and at the interface oxide/metal, on internal and external Zircaloy-2 tube surfaces, below and over crystalline transformation temperature of zirconium oxides. The commercial tubes were oxidized at 1273 K and 1373 K in calm air for 30 min and then examined with a technique novel for such purpose, namely a high-resolution X-ray computer tomography. The light microscopy was used to examine the cross-surfaces. The obtained results show that the form and intensity of oxide damage is significant and it is in a complicated way related to oxidation temperature and on whether external or internal tube surface is studied. The found oxide layer damage forms include surface cracks, the detachment of oxide layers, the appearance of voids, and nodular corrosion. The oxidation effects and damage appearance are discussed taking into account the processes such as formation of oxides, their phase transformation, stress-enhanced formation and propagation of cracks, diffusion of vacancies, formation of nitrides, diffusion of hydrogen into interface oxide-metal, incubation of cracks on second phase precipitates are taken into account to explain the observed phenomena.
Measurements of Residual Magnetic Field RMF (the tangential component parallel to the load direction) were taken on the surface of P91 steel plate samples (X10CrMoVNb9-1) subjected to periodic pulsating tensile cyclic loads with the use of flux-gate and magneto impedance sensors, and preliminary measurement results are compiled and analyzed. The study investigates how the microstructure and load cycle parameters affect the RMF changes due to stress variations. Each combination of parameters: microstructure and load cycle corresponds to the characteristic variability pattern of magnetization and its maximum and minimum values.