Cite

EU, Regulation (EU) 2015/2283 of the European Parliament and of the Council, of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 European Union 2011. L 304/18. EU, Regulation (EU) 2015/2283 of the European Parliament and of the Council, of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 European Union 2011. L 304/18Search in Google Scholar

Singhal R.S., P.R. Kulkarni, and D. Reg, Handbook of indices of food quality and authenticity. 1997: Woodhead Publishing. https://doi.org/10.1533/9781855736474 Singhal R.S. Kulkarni P.R. and Reg D. Handbook of indices of food quality and authenticity 1997 Woodhead Publishing. https://doi.org/10.1533/978185573647410.1533/9781855736474Search in Google Scholar

Gambuteanu C., D. Borda, and P. Alexe, The effect of freezing and thawing on technological properties of meat. Journal of Agroalimentary Processes and Technologies, 2013. 19(1): p. 88-93. Gambuteanu C. Borda D. and Alexe P. The effect of freezing and thawing on technological properties of meat Journal of Agroalimentary Processes and Technologies, 2013 191 p. 88 93Search in Google Scholar

Leygonie C., T.J. Britz, and L.C. Hoffman, Impact of freezing and thawing on the quality of meat. Meat Science, 2012. 91(2): p. 93-98. https://doi.org/10.1016/j.meatsci.2012.01.013 Leygonie C. Britz T.J. and Hoffman L.C. Impact of freezing and thawing on the quality of meat Meat Science, 2012 912 p. 93 98 https://doi.org/10.1016/j.meatsci.2012.01.01310.1016/j.meatsci.2012.01.01322326063Search in Google Scholar

Egelandsdal B., S.M. Abie, S. Bjarnadottir, et al., Detectability of the degree of freeze damage in meat depends on analytic-tool selection. Meat Science, 2019. 152: p. 8-19. https://doi.org/10.1016/j.meatsci.2019.02.002 Egelandsdal B. Abie S.M. Bjarnadottir S. et al. Detectability of the degree of freeze damage in meat depends on analytic-tool selection Meat Science, 2019 152 p. 8 19 https://doi.org/10.1016/j.meatsci.2019.02.00210.1016/j.meatsci.2019.02.00230784871Search in Google Scholar

Yu X.L., X.B. Li, L. Zhao, et al., Effects of Different Freezing Rates and Thawing Rates on the Manufacturing Properties and Structure of Pork. Journal of Muscle Foods, 2010. 21(2): p. 177-196. https://doi.org/10.1111/j.1745-4573.2009.00175.x Yu X.L. Li X.B. Zhao L. et al. Effects of Different Freezing Rates and Thawing Rates on the Manufacturing Properties and Structure of Pork Journal of Muscle Foods, 2010 212 p. 177 196 https://doi.org/10.1111/j.1745-4573.2009.00175.x10.1111/j.1745-4573.2009.00175.xSearch in Google Scholar

Ragnarsson S.Ö. and J.R. Viðarsson, Overview of available methods for thawing seafood/Lausnir sem standa til boða við uppþíðingu á sjávarfangi. 2017. Available from: https://www.matis.is/media/afrakstur/Skyrsla_0417.pdf[Accessed Dec 2022]. Ragnarsson S.Ö. and Viðarsson J.R. Overview of available methods for thawing seafood/Lausnir sem standa til boða við uppþíðingu á sjávarfangi 2017 Available from: https://www.matis.is/media/afrakstur/Skyrsla_0417.pdf [Accessed Dec 2022]Search in Google Scholar

Fernández-Segovia I., A. Fuentes, M. Aliño, et al., Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering, 2012. 113(2), pp.210-216. https://doi.org/10.1016/j.jfoodeng.2012.06.003 Fernández-Segovia I. Fuentes A. Aliño M. et al. Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method Journal of Food Engineering, 2012 1132 pp 210 216 https://doi.org/10.1016/j.jfoodeng.2012.06.00310.1016/j.jfoodeng.2012.06.003Search in Google Scholar

Chen T.-H., Y.-P. Zhu, M.-Y. Han, et al., Classification of chicken muscle with different freeze-thaw cycles using impedance and physicochemical properties. Journal of food engineering, 2017. 196: p. 94-100. https://doi.org/10.1016/j.jfoodeng.2016.10.003 Chen T.-H. Zhu Y.-P. Han M.-Y. et al. Classification of chicken muscle with different freeze-thaw cycles using impedance and physicochemical properties Journal of food engineering, 2017 196 p. 94 100 https://doi.org/10.1016/j.jfoodeng.2016.10.00310.1016/j.jfoodeng.2016.10.003Search in Google Scholar

Abie S.M., Ø.G. Martinsen, B. Egelandsdal, et al., Feasibility of using electrical impedance spectroscopy for assessing biological cell damage during freezing and thawing. Sensors, 2021. 21(12): p. 4129. https://doi.org/10.3390/s21124129 Abie S.M. Ø.G. Martinsen Egelandsdal B. et al. Feasibility of using electrical impedance spectroscopy for assessing biological cell damage during freezing and thawing Sensors, 2021 2112 p. 4129 https://doi.org/10.3390/s2112412910.3390/s21124129823539234208559Search in Google Scholar

Grimnes S. and Ø.G. Martinsen, Alpha-dispersion in human tissue. Journal of Physics: Conference Series, 2010. 224: 012073. https://doi.org/10.1088/1742-6596/224/1/012073 Grimnes S and Martinsen Ø.G. Alpha-dispersion in human tissue. Journal of Physics: Conference Series, 2010 224 012073 https://doi.org/10.1088/1742-6596/224/1/01207310.1088/1742-6596/224/1/012073Search in Google Scholar

Martinsen Ø.G., S. Grimnes, and H.P. Schwan, Interface phenomena and dielectric properties of biological tissue. Encyclopedia of Surface and Colloid Science, 2002. 20: p. 2643-2653. Martinsen Ø.G. Grimnes S. and Schwan H.P. Interface phenomena and dielectric properties of biological tissue Encyclopedia of Surface and Colloid Science 2002 20 p. 2643 2653Search in Google Scholar

Pliquett F. and U. Pliquett, Stress action on biological tissue and tissue models detected by the Py value. Annals of the New York Academy of Sciences, 1999. 873(1): p. 227-238. https://doi.org/10.1111/j.1749-6632.1999.tb09471.x Pliquett F. and Pliquett U. Stress action on biological tissue and tissue models detected by the Py value Annals of the New York Academy of Sciences, 1999 8731 p. 227 238 https://doi.org/10.1111/j.1749-6632.1999.tb09471.x10.1111/j.1749-6632.1999.tb09471.x10372172Search in Google Scholar

Schwan H.P., Electrical properties of tissue and cell suspensions, in Advances in Biological and Medical Physics. 1957, Elsevier. p. 147-209. https://doi.org/10.1016/B978-1-4832-3111-2.50008-0 Schwan H.P. Electrical properties of tissue and cell suspensions, in Advances in Biological and Medical Physics 1957 Elsevier p. 147 209 https://doi.org/10.1016/B978-1-4832-3111-2.50008-010.1016/B978-1-4832-3111-2.50008-0Search in Google Scholar

Cole K.S., Permeability and impermeability of cell membranes for ions. in Cold Spring Harbor Symposia on Quantitative Biology. 1940. Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/SQB.1940.008.01.013 Cole K.S. Permeability and impermeability of cell membranes for ions. in Cold Spring Harbor Symposia on Quantitative Biology. 1940 Cold Spring Harbor Laboratory Press https://doi.org/10.1101/SQB.1940.008.01.01310.1101/SQB.1940.008.01.013Search in Google Scholar

Grimnes S. and Ø.G. Martinsen, Bioimpedance and Bioelectricity Basics. 2nd ed. 2015: Academic Press. https://doi.org/10.1016/B978-0-12-411470-8.00011-8 Grimnes S. and Ø.G. Martinsen Bioimpedance and Bioelectricity Basics. 2nd ed. 2015 Academic Press. https://doi.org/10.1016/B978-0-12-411470-8.00011-810.1016/B978-0-12-411470-8.00011-8Search in Google Scholar

Cox K.W. and R. Heintz, Electrical phase angle as a new method to measure fish condition. Fishery Bulletin- National Oceanic and Atmospheric Administration, 2009. 107(4): p. 477-487. Cox K.W. and Heintz R. Electrical phase angle as a new method to measure fish condition Fishery Bulletin- National Oceanic and Atmospheric Administration, 2009 1074 p. 477 487Search in Google Scholar

Schumacher L.L., J. Viégas, G.d.S. Cardoso, et al., Bioelectrical impedance analysis (BIA) in animal production. Revista Mexicana de Ciencias Pecuarias, 2021. 12(2): p. 553-572. https://doi.org/10.22319/rmcp.v12i2.5821 Schumacher L.L. Viégas J. G.d.S. Cardoso et al. Bioelectrical impedance analysis (BIA) in animal production Revista Mexicana de Ciencias Pecuarias, 2021 122 p. 553 572 https://doi.org/10.22319/rmcp.v12i2.582110.22319/rmcp.v12i2.5821Search in Google Scholar

Norman K., N. Stobäus, M. Pirlich, et al., Bioelectrical phase angle and impedance vector analysis-clinical relevance and applicability of impedance parameters. Clinical Nutrition, 2012. 31(6): p. 854-861. https://doi.org/10.1016/j.clnu.2012.05.008 Norman K. Stobäus N. Pirlich M. et al. Bioelectrical phase angle and impedance vector analysis-clinical relevance and applicability of impedance parameters Clinical Nutrition, 2012 316 p. 854 861 https://doi.org/10.1016/j.clnu.2012.05.00810.1016/j.clnu.2012.05.00822698802Search in Google Scholar

20. Damez J.-L., S. Clerjon, Meat quality assessment using biophysical methods related to meat structure. Meat Science, 2008. 80(1): p. 132-149. https://doi.org/10.1016/j.meatsci.2008.05.039 Damez J.-L. Clerjon S. Meat quality assessment using biophysical methods related to meat structure Meat Science, 2008 801 p. 132 149 https://doi.org/10.1016/j.meatsci.2008.05.03910.1016/j.meatsci.2008.05.03922063178Search in Google Scholar

Oliveira M., G. Gubert, S.S. Roman, et al., Meat quality of chicken breast subjected to different thawing methods. Brazilian Journal of Poultry Science, 2015. 17: p. 165-171. https://doi.org/10.1590/1516-635x1702165-172 Oliveira M. Gubert G. Roman S.S. et al. Meat quality of chicken breast subjected to different thawing methods Brazilian Journal of Poultry Science, 2015 17 p. 165 171 https://doi.org/10.1590/1516-635x1702165-17210.1590/1516-635x1702165-172Search in Google Scholar

Pliquett U., Bioimpedance: a review for food processing. Food Engineering Reviews, 2010. 2(2): p. 74-94. https://doi.org/10.1007/s12393-010-9019-z Pliquett U. Bioimpedance: a review for food processing Food Engineering Reviews, 2010 22 p. 74 94 https://doi.org/10.1007/s12393-010-9019-z10.1007/s12393-010-9019-zSearch in Google Scholar

Zhao, X., H. Zhuang, S.C. Yoon, et al., Electrical impedance spectroscopy for quality assessment of meat and fish: A review on basic principles, measurement methods, and recent advances. Journal of Food Quality, 2017. 2: p. 1-16. https://doi.org/10.1155/2017/6370739 Zhao X. Zhuang H. Yoon S.C. et al. Electrical impedance spectroscopy for quality assessment of meat and fish: A review on basic principles, measurement methods, and recent advances Journal of Food Quality, 2017 2 p. 1 16 https://doi.org/10.1155/2017/637073910.1155/2017/6370739Search in Google Scholar

Pliquett U., M. Altmann, F. Pliquett, et al., Py-a parameter for meat quality. Meat Science, 2003. 65(4): p. 1429-1437. https://doi.org/10.1016/S0309-1740(03)00066-4 Pliquett U. Altmann M. Pliquett F. et al. Py-a parameter for meat quality Meat Science, 2003 654 p. 1429 1437 https://doi.org/10.1016/S0309-1740(03)00066-410.1016/S0309-1740(03)00066-422063788Search in Google Scholar

Cseresnyés I., K. Rajkai, and E. Vozáry, Role of phase angle measurement in electrical impedance spectroscopy. International Agrophysics, 2013. 27(4): p. 377-383. https://doi.org/10.2478/intag-2013-0007 Cseresnyés I. Rajkai K. and Vozáry E. Role of phase angle measurement in electrical impedance spectroscopy International Agrophysics, 2013 274 p. 377 383 https://doi.org/10.2478/intag-2013-000710.2478/intag-2013-0007Search in Google Scholar

Di Vincenzo O., M. Marra, and L. Scalfi, Bioelectrical impedance phase angle in sport: A systematic review. Journal of the International Society of Sports Nutrition, 2019. 16(1): p. 1-11. https://doi.org/10.1186/s12970-019-0319-2 Di Vincenzo O. Marra M. and Scalfi L. Bioelectrical impedance phase angle in sport: A systematic review Journal of the International Society of Sports Nutrition, 2019 161 p. 1 11 https://doi.org/10.1186/s12970-019-0319-210.1186/s12970-019-0319-2683325431694665Search in Google Scholar

Kumar S., A. Dutt, S. Hemraj, et al., Phase angle measurement in healthy human subjects through bio-impedance analysis. Iranian Journal of Basic Medical Sciences, 2012. 15(6): p. 1180. Kumar S. Dutt A. Hemraj S. et al. Phase angle measurement in healthy human subjects through bio-impedance analysis Iranian Journal of Basic Medical Sciences, 2012 156 p. 1180Search in Google Scholar

Peres W., D.F. Lento, K. Baluz, et al., Phase angle as a nutritional evaluation tool in all stages of chronic liver disease. Nutricion Hospitalaria, 2012. 27(6): p. 2072-2078. Peres W. Lento D.F. Baluz K. et al. Phase angle as a nutritional evaluation tool in all stages of chronic liver disease Nutricion Hospitalaria, 2012 276 p. 2072 2078Search in Google Scholar

Tanaka S., K. Ando, K. Kobayashi, et al., Low bioelectrical impedance phase angle is a significant risk factor for frailty. BioMed Research International, 2019. 2019. 6283153. https://doi.org/10.1155/2019/6283153 Tanaka S. Ando K. Kobayashi K. et al., Low bioelectrical impedance phase angle is a significant risk factor for frailty. BioMed Research International, 2019 2019. 6283153 https://doi.org/10.1155/2019/628315310.1155/2019/6283153659064231281842Search in Google Scholar

Damez J.-L., S. Clerjon, S. Abouelkaram, et al., Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageing. Journal of Food Engineering, 2008. 85(1): p. 116-122. https://doi.org/10.1016/j.jfoodeng.2007.07.026 Damez J.-L. Clerjon S. Abouelkaram S. et al. Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageing Journal of Food Engineering, 2008 851 p. 116 122 https://doi.org/10.1016/j.jfoodeng.2007.07.02610.1016/j.jfoodeng.2007.07.026Search in Google Scholar

Kim Y.H.B., D. Ma, D. Setyabrata, et al., Understanding postmortem biochemical processes and post-harvest aging factors to develop novel smart-aging strategies. Meat Science, 2018. 144: p. 74-90. https://doi.org/10.1016/j.meatsci.2018.04.031 Kim Y.H.B. Ma D. Setyabrata D. et al. Understanding postmortem biochemical processes and post-harvest aging factors to develop novel smart-aging strategies Meat Science, 2018 144 p. 74 90 https://doi.org/10.1016/j.meatsci.2018.04.03110.1016/j.meatsci.2018.04.03129731371Search in Google Scholar

Offer G. and T. Cousins, The mechanism of drip production: formation of two compartments of extracellular space in muscle post mortem. Journal of the Science of Food and Agriculture, 1992. 58(1): p. 107-116. https://doi.org/10.1002/jsfa.2740580118 Offer G. and Cousins T. The mechanism of drip production: formation of two compartments of extracellular space in muscle post mortem Journal of the Science of Food and Agriculture, 1992 581 p. 107 116 https://doi.org/10.1002/jsfa.274058011810.1002/jsfa.2740580118Search in Google Scholar

Huff‐Lonergan E. and S. Lonergan, New frontiers in understanding drip loss in pork: recent insights on the role of postmortem muscle biochemistry. Journal of Animal Breeding and Genetics, 2007. 124: p. 19-26. https://doi.org/10.1111/j.1439-0388.2007.00683.x Huff‐Lonergan E. and Lonergan S. New frontiers in understanding drip loss in pork: recent insights on the role of postmortem muscle biochemistry Journal of Animal Breeding and Genetics, 2007 124 p. 19 26 https://doi.org/10.1111/j.1439-0388.2007.00683.x10.1111/j.1439-0388.2007.00683.x17988247Search in Google Scholar

Eliášová M., J. Kameník, A. Saláková, et al., The effect of PSE and non-PSE Adductor and Semimembranosus pig muscles on the occurrence of destructured zones in cooked hams. Journal of Food Quality, 2017. 6305051. https://doi.org/10.1155/2017/6305051 Eliášová M. Kameník J. Saláková A. et al. The effect of PSE and non-PSE Adductor and Semimembranosus pig muscles on the occurrence of destructured zones in cooked hams Journal of Food Quality 2017 6305051 https://doi.org/10.1155/2017/630505110.1155/2017/6305051Search in Google Scholar

Laville E., et al., Characterization of PSE zones in semimembranosus pig muscle. Meat Science, 2005. 70(1): p. 167-172. https://doi.org/10.1016/j.meatsci.2004.12.008 Laville E. et al. Characterization of PSE zones in semimembranosus pig muscle Meat Science, 2005 701 p. 167 172 https://doi.org/10.1016/j.meatsci.2004.12.00810.1016/j.meatsci.2004.12.00822063293Search in Google Scholar

Suliga P., S. Abie, B. Egelandsdal, et al., Beyond standard PSE testing: An exploratory study of bioimpedance as a marker for ham defects. Meat Science, 2022: 108980. https://doi.org/10.1016/j.meatsci.2022.108980 Suliga P. Abie S. Egelandsdal B. et al. Beyond standard PSE testing: An exploratory study of bioimpedance as a marker for ham defects Meat Science, 2022 108980 https://doi.org/10.1016/j.meatsci.2022.10898010.1016/j.meatsci.2022.10898036148720Search in Google Scholar

Chin A.B., L.P. Garmirian, R. Nie, et al., Optimizing measurement of the electrical anisotropy of muscle. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 2008. 37(5): p. 560-565. https://doi.org/10.1002/mus.20981 Chin A.B. Garmirian L.P. Nie R. et al. Optimizing measurement of the electrical anisotropy of muscle Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 2008 375 p. 560 565 https://doi.org/10.1002/mus.2098110.1002/mus.20981274267218404614Search in Google Scholar

Ahmed M.M. and M. Mohamed, Anisotropy in the dielectric properties of skeletal muscle. Egypt Journal of Biophysical and Biomedical Engineering, 2006. 7(1), p. 97-107. Ahmed M.M. and Mohamed M. Anisotropy in the dielectric properties of skeletal muscle Egypt Journal of Biophysical and Biomedical Engineering, 2006 71 p. 97 107Search in Google Scholar

Elwakil A.S. and B. Maundy, Extracting the Cole-Cole impedance model parameters without direct impedance measurement. Electron. Lett, 2010. 46(20), pp.1367-1368. https://doi.org/10.1049/el.2010.1924 Elwakil A.S. and Maundy B. Extracting the Cole-Cole impedance model parameters without direct impedance measurement Electron. Lett, 2010 4620 pp 1367 1368 https://doi.org/10.1049/el.2010.192410.1049/el.2010.1924Search in Google Scholar

Ayllon D., F. Seoane, and R. Gil-Pita, Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements-a comparative study. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. p. 3779-3782. https://doi.org/10.1109/IEMBS.2009.5334494 Ayllon D. Seoane F. and Gil-Pita R. Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements-a comparative study. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2009 p. 3779 3782 https://doi.org/10.1109/IEMBS.2009.533449410.1109/IEMBS.2009.533449419964815Search in Google Scholar

Yang Y., W. Ni, Q. Sun, et al., Improved Cole parameter extraction based on the least absolute deviation method. Physiological Measurement, 2013. 34(10), p.1239. https://doi.org/10.1088/0967-3334/34/10/1239 Yang Y. Ni W. Sun Q. et al. Improved Cole parameter extraction based on the least absolute deviation method Physiological Measurement, 2013 3410 p. 1239 https://doi.org/10.1088/0967-3334/34/10/123910.1088/0967-3334/34/10/123924021745Search in Google Scholar