Cite

Ahmad, S.S., Tahir I., 2016. Increased oxidative stress, lipid peroxidation and protein degradation trigger senescence in Iris versicolor L. flowers. Physiol. Mol. Biol. Plants. 22(4), 507-514.10.1007/s12298-016-0392-9512004927924123Search in Google Scholar

Arellano K., Herrera J., Quispe M., Espinoza C., Veliz N., Orihuela W., 2015. Evaluation of phenolic compounds and antioxidant capacity of three color petal cress (Tropaeolum majus L.). Rev. Soc. Quím. Perú. 81(4), 319-328.10.37761/rsqp.v81i4.37Search in Google Scholar

Anónimo. 1990. Official methods of analyses. Washington, D.C. Association of Official Analytical Chemists.Search in Google Scholar

Azuma, M., Onozaki T., Ichimura K., 2019. Effects of bacterial proliferation and soluble carbohydrate levels on the vase life of cut dahlia (Dahlia variabilis) Flowers. Hort. J. 88(1), 106-115.10.2503/hortj.OKD-176Search in Google Scholar

Babarabie M., Zarei H., Varasteh F., 2016. Physiological response of Gerbera jamesonii L. cut flowers to the cola and peppermint essence. Iran. J. Plant Physiol. 6(3), 1729-1736.Search in Google Scholar

Benvenuti S., Bortolotti E., Maggini R., 2016. Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Sci. Hortic. 199, 170-177.10.1016/j.scienta.2015.12.052Search in Google Scholar

Chen N.H., Wei S., 2017. Factors influencing consumers’ attitudes towards the consumption of edible flowers. Food Qual. Prefer. 56(Part A), 93-100.10.1016/j.foodqual.2016.10.001Search in Google Scholar

Fernandes L., Ramalhosa E., Pereira J.A., Saraiva J.A., Casal S., 2018. The unexplored potential of edible flowers lipids. Agriculture 8(10), 1-23.10.3390/agriculture8100146Search in Google Scholar

Garzón G.A., Manns D.C., Riedl K., Schwartz S.J., Padilla-Zakour O., 2015. Identification of phenolic compounds in petals of nasturtium flowers (Tropaeolum majus) by high performance liquid chromatography coupled to mass spectrometry and determination of oxygen radical absorbance capacity (ORAC). J. Agric. Food Chem. 63(6), 111-118.10.1021/jf503366c25659835Search in Google Scholar

Gebremedhin H., Tesfaye B., Mohammed A., Tsegay D., 2013. Influence of preservative solutions on vase life and postharvest characteristics of rose (Rosa hybrid) cut flowers. Int. J. Biotechnol. Mol. Biol. Res. 4(8), 111-118.10.5897/IJBMBR2013.0171Search in Google Scholar

Giusti M.M., Wrolstad R.E., 2001. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Current Protocols in Food Analytical Chemistry. Wrolstad R.E., Acree T.E., An H., Decker E.A., Penner M.H., Reid D.S., Schwartz S.J., Shoemaker C.F. and Sporns P. (Eds), John Wiley & Sons, New York, F1.2.1-F1.2.13.10.1002/0471142913Search in Google Scholar

Huang M., Xu Q., Deng X.X., 2014. L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt). J. Plant Physiol. 171(14), 1205-16.10.1016/j.jplph.2014.03.01025019249Search in Google Scholar

Jagota S., Dani H., 1982. A new colorimetric technique for the estimation of vitamin C using Folin Phenol Reagent. Anal. Biochem. 127(1), 178-182.10.1016/0003-2697(82)90162-2Search in Google Scholar

Juárez-Rosete C.R., Aguilar-Castillo J.A., Aburto-González C.A., Alejo-Santiago G., 2019. Biomass production, nutritional requirement of nitrogen, phosphorus and potassium, and concentration of the nutrient solution in oregano. Rev. Chapingo Ser. Hortic. 25(1), 17-28.10.5154/r.rchsh.2018.02.006Search in Google Scholar

Kaisoon O., Siriamornpun S., Weerapreeyakul N., Meeso N., 2011. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods. 3(2), 88-99.10.1016/j.jff.2011.03.002Search in Google Scholar

Lara-Cortés E., Martín-Belloso O., Osorio-Díaz P., Barrera-Necha L.L., Sánchez-López J.A., Bautista-Baños S., 2014. Antioxidant capacity, nutritional and functional composition of edible Dahlia flowers. Rev. Chapingo Ser. Hortic. 20(1), 101-116.10.5154/r.rchsh.2013.07.024Search in Google Scholar

Lara-Cortés E., Osorio-Díaz P., Jiménez-Aparicio A., Bautista-Baños S., 2013. Nutritional content, functional properties and conservation of edible flowers. Review. Arch. Latinoam. Nutr. 63(3), 197-208.Search in Google Scholar

Lara-Cortés E., Troncoso-Rojas R., Hernández-López M., Bautista-Baños S., 2016. Evaluation of the antimicrobial activity of cinnamaldehyde in the preservation of edible dahlia flowers, under different storage conditions. Rev. Chapingo Ser. Hortic. 22(3), 177-189.10.5154/r.rchsh.2016.02.002Search in Google Scholar

Lee J.H., Lee H.J., Choung M.G., 2009. Anthocyanin compositions and biological activities from the red petals of Korean edible rose (Rosa hybrida cv. Noblered). Food Chem. 129(2), 272-278.10.1016/j.foodchem.2011.04.04030634226Search in Google Scholar

Li X., Lu M., Tang D., Shi Y., 2015. Composition of carotenoids and flavonoids in narcissus cultivars and their relationship with flower color. PLoS ONE, 10(1), e0142074.10.1371/journal.pone.0142074463303726536625Search in Google Scholar

Liu L., Zhang L.Y., Wang S.L., Niu X.Y., 2016. Analysis of anthocyanins and flavonols in petals of 10 Rhododendron species from the Sygera Mountains in Southeast Tibet. Plant Physiol. Biochem. 104, 250-256.10.1016/j.plaphy.2016.03.03627058775Search in Google Scholar

Loizzo M.R., Pugliese A., Bonesi M., Tenuta M.C., Menichini F., Xiao J., ETAL., 2016. Edible flowers: a rich source of phytochemicals with antioxidant and hypoglycemic properties. J. Agric. Food Chem. 64(12), 2467-2474.10.1021/acs.jafc.5b0309226270801Search in Google Scholar

López-Cervantes J., Sánchez-Machado D.I., Cruz-Flores P., Mariscal-Domínguez M.F., Servín De La Mora-López G., ETAL., 2018. Antioxidant capacity, proximate composition, and lipid constituents of Aloe vera flowers. J. Appl. Res. Med. Aromat. Plants. 10, 93-98.10.1016/j.jarmap.2018.02.004Search in Google Scholar

Mlcek J., Rop O., 2011. Fresh edible flowers of ornamental plants – A new source of nutraceutical foods. Trends Food Sci. Technol. 22(10), 561-569.10.1016/j.tifs.2011.04.006Search in Google Scholar

Navarro-González I., González-Barrio R., Garcia-Valverde V., Bautista-Ortín A.B., Periago M.J., 2015. Nutritional composition and antioxidant capacity in edible flowers: Characterisation of phenolic compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 16(1), 805-822.10.3390/ijms16010805430727625561232Search in Google Scholar

Ohno S., Deguchi A., Hosokawa M., Tatsuzawa F., Doi M., 2013. A basic helix-loop-helix transcription factor DvIVS determines flower color intensity in cyanic dahlia cultivars. Planta 238(2), 331-343.10.1007/s00425-013-1897-x23689377Search in Google Scholar

Ozgen M., Reese R.N., Tulio A.Z., Miller A.R., Scheerens J.C., 2006. Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,20-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 54(4), 1151-1157.10.1021/jf051960d16478230Search in Google Scholar

Pires T.G.S.P., Dias M.I., Barros L., Galhelha R.G., Alves M.J., Oliveira M.B.P.P., ETAL., 2018. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 105, 580-588.10.1016/j.foodres.2017.11.01429433250Search in Google Scholar

Rachkeeree A., Kantadoung K., Suksathan R., Puangpradab R., Page P.A., Sommano S.R., 2018. Nutritional compositions and phytochemical properties of the edible flowers from selected zingiberaceae found in Thailand. Front. Nutr. 5(3), 1-10.10.3389/fnut.2018.00003579924329450200Search in Google Scholar

Ren P.J., Jin X., Liao W.B., Wang M., Niu L.J., Li X.P., ET AL. 2017. Effect of hydrogen-rich water on vase life and quality of cut lily and rose flowers. Hortic. Environ. Biotechnol. 58(6), 576-584.10.1007/s13580-017-0043-2Search in Google Scholar

Rop O., Mlcek J., JurikovA T., Neugebauerova J., Vabkova J., 2012. Edible flowers – A new promising source of mineral elements in human nutrition. Molecules 17(6), 6672-6683.10.3390/molecules17066672626829222728361Search in Google Scholar

SotelO, A., López-Garcia S., Basurto-Peña F., 2007. Content of nutrient and antinutrient in edible flowers of wild plants in Mexico. Plant Foods Hum. Nutr. 62(3), 133-138.10.1007/s11130-007-0053-917768684Search in Google Scholar

Waterman P.G., Mole S., 1994. Methods in Ecology. Analysis of Phenolic Plant Metabolites. Blackwell Scientific Publications, Oxford, USA.Search in Google Scholar

Yang E., Kang H., Kim C., Pak C.H., 2014. Dependence of the color appearance of some flowers on illumination. Color Res. Appl. 39(1), 28-36.10.1002/col.21766Search in Google Scholar

Younis A., Anjum S., Riaz A., Hameed M., Tariq U., Ahsan M., 2014. Production of quality dahlia (Dahlia variabilis cv. Redskin) flowers by efficient nutrients management running title: plant nutrition impacts on dahlia quality. Am. Eurasian J. Agric. Environ. Sci. 14(2), 137-142.Search in Google Scholar

Zeng Y., Deng M., Zhencheng LV., Peng Y., 2014. Evaluation of antioxidant activities of extracts from 19 Chinese edible flowers. SpringerPlus 3(1), 315.10.1186/2193-1801-3-315408225225013750Search in Google Scholar

Zhang C., Fu J.X., Wang Y.J., Gao S.L., Du D.N., Wu F., etal., 2015. Glucose supply improves petal coloration and anthocyanin biosynthesis in Paeonia suffruticosa Luoyang Hong’ cut flowers. Postharvest Biol. Technol. 101, 73-81.10.1016/j.postharvbio.2014.11.009Search in Google Scholar

Zhao D.Q., Tao J., Han C.X., Ge J.T., 2012. Flower color diversity revealed by differential expression of flavonoid biosynthetic genes and flavonoid accumulation in herbaceous peony (Paeonia lactiflora Pall.). Mol. Biol. Rep. 39(12), 11263-11275.10.1007/s11033-012-2036-723054003Search in Google Scholar

eISSN:
2083-5965
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, Zoology, Ecology, other