[Armenti A., Zama A., Passantino L., Uzumcu M. (2008). Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats. Toxicol. Appl. Pharmacol., 233: 286–296.]Search in Google Scholar
[Aydoğan M., Barlas N. (2006). Effects of maternal 4-tert-octylphenol exposure on the reproductive tract of male rats at adulthood. Reprod. Toxicol., 22: 455–460.]Search in Google Scholar
[Bendixen E., Danielsen M., Larsen K., Bendixen C. (2010). Advances in porcine genomics – a toolbox for developing the pig as a model organism for molecular biomedical research. Brief. Funct. Genomics., 9: 208–219.]Search in Google Scholar
[Bertho S., Pasquier J., Pan Q., Le Trionnaire G., Bobe J., Postlethwait J.H., Pailhoux E., Schartl M., Herpin A., Guiguen Y. (2016) Foxl2 and its relatives are evolutionary conserved players in gonadal sex differentiation. Sex Dev., 10: 111–129.]Search in Google Scholar
[Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72: 248–254.]Search in Google Scholar
[Cervantes-Camacho I., Guerrero-Estévez S.M., López M.F., Alarcón-Hernández E., López-López E. (2020). Effects of Bisphenol A on Foxl2 gene expression and DNA damage in adult viviparous fish Goodea atripinnis. J. Toxicol. Environ. Health A, 83: 95–112.]Search in Google Scholar
[Cocquet J., Pailhoux E., Jaubert F., Servel N., Xia X., Pannetier M., De Baere E., Messiaen L., Cotinot C., Fellous M., Veitia R.A. (2002). Evolution and expression of FOXL2. J. Med. Genet., 39: 916–921.]Search in Google Scholar
[Crisponi L., Deiana M., Loi A., Chiappe F., Uda M., Amati P., Bisceglia L., Zelante L., Nagaraja R., Porcu S., Ristaldi M.S., Marzella R., Rocchi M., Nicolino M., Lienhardt-Roussie A., Nivelon A., Verloes A., Schlessinger D., Gasparini P., Bonneau D., Cao A., Pilia G. (2001). The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat. Genet., 27: 159–166.]Search in Google Scholar
[Durlinger A.L., Gruijters M.J., Kramer P., Karels B., Ingraham H.A., Nachtigal M.W., Uilenbroek J.T., Grootegoed J.A., Themmen A.P. (2002). Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology, 143: 1076–1084.]Search in Google Scholar
[Elzaiat M., Todeschini A.L., Caburet S., Veitia R.A. (2017). The genetic make-up of ovarian development and function: the focus on the transcription factor FOXL2. Clin. Genet., 91: 173–182.]Search in Google Scholar
[Fleming N.I., Knower K.C., Lazarus K.A., Fuller P.J., Simpson E.R., Clyne C.D. (2010). Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS ONE, 5: e14389.]Search in Google Scholar
[Georges A., Auguste A., Bessiere L., Vanet A., Todeschini A.L., Veitia R.A. (2014). FOXL2: a central transcription factor of the ovary. J. Mol. Endocrinol., 52: R17–33.]Search in Google Scholar
[Ghochani Y., Saini J.K., Mellon P.L., Thackray V.G. (2012). FOXL2 is involved in the synergy between activin and progestins on the follicle-stimulating hormone β-subunit promoter. Endocrinology, 153: 2023–2033.]Search in Google Scholar
[Grzesiak M., Knapczyk-Stwora K., Ciereszko R.E., Wieciech I., Slomczynska M. (2014). Alterations in luteal production of androstendione, testosterone, and estrone, but not estradiol, during mid- and late pregnancy in pigs: Effects of androgen deficiency. Theriogenology, 82: 720–733.]Search in Google Scholar
[Hirano M., Wada-Hiraike O., Fu H., Akino N., Isono W., Sakurabashi A., Fukuda T., Morita Y., Tanikawa M., Miyamoto Y., Nishi Y., Yanase T., Harada M., Oishi H., Yano T., Koga K., Oda K., Kawana K., Fujii T., Osuga Y. (2017). The emerging role of FOXL2 in regulating the transcriptional activation function of estrogen receptor β: an insight into ovarian folliculogenesis. Reprod Sci., 24: 133–141.]Search in Google Scholar
[Kim J.H., Yoon S., Park M., Park H.O., Ko J.J., Lee K., Bae J. (2011). Differential apoptotic activities of wild-type FOXL2 and the adult-type granulosa cell tumor-associated mutant FOXL2 (C134W). Oncogene, 30: 1653–1663.]Search in Google Scholar
[Knapczyk-Stwora K., Durlej-Grzesiak M., Ciereszko R.E., Koziorowski M., Slomczynska M. (2013). Antiandrogen flutamide affects folliculogenesis during fetal development in pigs. Reproduction, 145: 265–276.]Search in Google Scholar
[Knapczyk-Stwora K., Grzesiak M., Ciereszko R.E., Czaja E., Koziorowski M., Slomczynska M. (2018). The impact of sex steroid agonists and antagonists on folliculogenesis in the neonatal porcine ovary via cell proliferation and apoptosis. Theriogenology, 113: 19–26.]Search in Google Scholar
[Knapczyk-Stwora K., Nynca A., Ciereszko R.E., Paukszto L., Jastrzebski J.P., Czaja E., Witek P., Koziorowski M., Slomczynska M. (2019). Flutamide-induced alterations in transcriptional profiling of neonatal porcine ovaries. J. Anim. Sci. Biotechnol., 10: 35.]Search in Google Scholar
[Knapczyk-Stwora K., Nynca A., Ciereszko R.E., Paukszto L., Jastrzebski J.P., Czaja E., Witek P., Koziorowski M., Slomczynska M. (2020 a). Transcriptomic profiles of the ovaries from piglets neonatally exposed to 4-tert-octylphenol. Theriogenology, 153: 102–111.10.1016/j.theriogenology.2020.04.02732450468]Search in Google Scholar
[Knapczyk-Stwora K., Costa M.C., Gabriel A., Grzesiak M., Hubalewska-Mazgaj M., Witek P., Koziorowski M., Slomczynska M. (2020 b). A transcriptome approach evaluating effects of neonatal androgen and anti-androgen treatments on regulation of luteal function in sexually mature pigs. Anim. Reprod. Sci., 212: 106252.10.1016/j.anireprosci.2019.10625231864499]Search in Google Scholar
[Kummer V., Masková J., Zralý Z., Neca J., Simecková P., Vondrácek J., Machala M. (2008). Estrogenic activity of environmental polycyclic aromatic hydrocarbons in uterus of immature Wistar rats. Toxicol. Lett., 180: 212–221.]Search in Google Scholar
[Kuo F.T., Bentsi-Barnes I.K., Barlow G.M., Pisarska M.D. (2011). Mutant forkhead L2 (FOXL2) proteins associated with premature ovarian failure (POF) dimerize with wild-type FOXL2, leading to altered regulation of genes associated with granulosa cell differentiation. Endocrinology, 152: 3917–3929.]Search in Google Scholar
[Kuo F.T., Fan K., Bentsi-Barnes I., Barlow G.M., Pisarska M.D. (2012). Mouse forkhead L2 maintains repression of FSH-dependent genes in the granulosa cell. Reproduction, 144: 485–494.]Search in Google Scholar
[Lauretta R., Sansone A., Sansone M., Romanelli F., Appetecchia M. (2019). Endocrine disrupting chemicals: effects on endocrine glands. Front. Endocrinol. (Lausanne), 10: 178.]Search in Google Scholar
[Leung D.T.H., Fuller P.J., Chu S. (2016). Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors. Int. J. Biochem. Cell. Biol., 72: 51–54.]Search in Google Scholar
[Monniaux D., Clément F., Dalbiès-Tran R., Estienne A., Fabre S., Mansanet C., Monget P. (2014). The ovarian reserve of primordial follicles and the dynamic reserve of antral growing follicles: What is the link? Biol. Reprod., 90: 85.]Search in Google Scholar
[Pannetier M., Fabre S., Batista F., Kocer A., Renault L., Jolivet G., Mandon-Pepin B., Cotinot C., Veitia R., Pailhoux E. (2006). FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J. Mol. Endocrinol., 36: 399–413.]Search in Google Scholar
[Park M., Suh D.S., Lee K., Bae J. (2014). Positive cross talk between FOXL2 and antimüllerian hormone regulates ovarian reserve. Fertil Steril., 102: 847–855.]Search in Google Scholar
[Pepling M.E. (2012). Follicular assembly: Mechanisms of action. Reproduction, 143: 139–149.]Search in Google Scholar
[Stocco C. (2008). Aromatase expression in the ovary: hormonal and molecular regulation. Steroids, 73: 473–487.]Search in Google Scholar
[Tyndall V., Broyde M., Sharpe R., Welsh M., Drake A.J., Mc Neilly A.S. (2012). Effect of androgen treatment during foetal and/or neonatal life on ovarian function in prepubertal and adult rats. Reproduction, 143: 21–33.]Search in Google Scholar
[Uda M., Ottolenghi C., Crisponi L., Garcia J.E., Deiana M., Kimber W., Forabosco A., Cao A., Schlessinger D., Pilia G. (2004). Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum. Mol. Genet., 13: 1171–1181.]Search in Google Scholar
[Uhlenhaut N.H., Jakob S., Anlag K., Eisenberger T., Sekido R., Kress J., Treier A.C., Klugmann C., Klasen C., Holter N.I., Riethmacher D., Schütz G., Cooney A.J., Lovell-Badge R., Treier M. (2009). Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell, 139: 1130–1142.]Search in Google Scholar
[Uzumcu M., Kuhn P.E., Marano J.E., Armenti A.E., Passantino L. (2006). Early postnatal methoxychlor exposure inhibits folliculogenesis and stimulates anti-Mullerian hormone production in the rat ovary. J. Endocrinol., 191: 549–558.]Search in Google Scholar
[Wang D.S., Kobayashi T., Zhou L.Y., Paul-Prasanth B., Ijiri S., Sakai F., Okubo K., Morohashi K., Nagahama Y. (2007). Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol. Endocrinol., 21: 712–725.]Search in Google Scholar
[Wang H., Wu T., Qin F., Wang L., Wang Z. (2012). Molecular cloning of Foxl2 gene and the effects of endocrine-disrupting chemicals on its mRNA level in rare minnow, Gobiocypris rarus. Fish. Physiol. Biochem., 38: 653–664.]Search in Google Scholar
[Wu J., Miao C., Lv X., Zhang Y., Li Y., Wang D. (2019). Estrogen regulates forkhead transcription factor 2 to promote apoptosis of human ovarian granulosa-like tumor cells. J. Steroid Biochem. Mol. Biol., 194: 105418.]Search in Google Scholar
[Zhao S., Fernald R.D. (2005). Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol., 12: 1047–1064.]Search in Google Scholar